搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铷蒸气Λ-型系统中的受激Raman谱与光泵效应

裴丽娅 王如泉 左战春 吴令安 傅盘铭

引用本文:
Citation:

铷蒸气Λ-型系统中的受激Raman谱与光泵效应

裴丽娅, 王如泉, 左战春, 吴令安, 傅盘铭

Stimulated Raman spectrum and optical pumping in a Λ-type Rb vapor system

Pei Li-Ya, Wang Ru-Quan, Zuo Zhan-Chun, Wu Ling-An, Fu Pan-Ming
PDF
导出引用
  • 从理论和实验上研究了85Rb 原子蒸气D1线系统中的受激Raman现象. 在Λ-型能级系统中, 抽运光对弱探测光的影响有两部分: 受激Raman激发和光泵效应. 在一定的抽运光强度和失谐量条件下, 受激Raman谱表现为增益谱或损耗谱; 以光泵效应导致的吸收谱为背景时, 便分别形成了窄线宽透明窗口或线宽差异很大的吸收双线. 理论模拟和实验结果基本符合. 基于这些研究, 从新的角度阐述了在Λ-型系统中的电磁感应透明和Autler-Townes分裂这两个重要现象与受激Raman谱之间的关系.
    Theoretical and experimental studies of stimulated Raman spectrum with the D1 line of an 85Rb atomic vapor system are performed. In this Λ-type system, we discover that the influence of the pump on the probe field includes two parts: stimulated Raman excitation and optical pumping. Depending on the pump frequency detuning and field intensity conditions, the Raman spectrum can display either gain or loss. When the optically pumped absorption spectrum is taken as background, either a narrow transparent window or an absorption doublet with widely different linewidths appears. Our theoretical analysis agrees well with our experimental observations. Based on these studies, we present an interpretation from a new viewpoint of the physics of electromagnetically induced transparency (with on-resonance pumping) and Autler-Townes splitting (with far off-resonance pumping) in a Λ-type level atomic system, giving the relationship between these two important phenomena and the Raman spectrum.
    • 基金项目: 国家自然科学基金(批准号: 10974252, 11274376, 60978002)、国家重点基础研究发展计划(批准号: 2010CB922904)和国家高技术研究发展计划(批准号: 2011AA120102) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974252, 11274376, 60978002), the National Basic Research Program of China (Grant No. 2010CB922904), and the National High Technology Research and Development Program of China (Grant No. 2011AA120102).
    [1]

    Boller K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [2]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C 1999 Nature 397 594

    [4]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [5]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [6]

    Boyer V, McCormick C F, Arimondo E, Lett P D 2007 Phys. Rev. Lett. 99 143601

    [7]

    Boyer V, Marino A M, Pooser R C, Lett P D 2008 Science 321 544

    [8]

    van der Wal C H, Eisaman M D, André A, Walsworth R L, Phillips D F, Zibrov A S, Lukin M D 2003 Science 301 196

    [9]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731

    [10]

    Jain M, Xia H, Yin G Y, Merriam A J, Harris S E 1996 Phys. Rev. Lett. 77 4326

    [11]

    Yavuz D D, Walker D R, Shverdin M Y, Yin G Y, Harris S E 2003 Phys. Rev. Lett. 91 233602

    [12]

    Harada K, Kanbashi T, Mitsunaga M 2006 Phys. Rev. A 73 013807

    [13]

    Li Y Q, Xiao M 1995 Phys. Rev. A 51 R2703

    [14]

    Rapol U D, Wasan A, Natarajan V 2003 Phys. Rev. A 67 053802

    [15]

    Zhu Y F, Wasserlauf T N 1996 Phys. Rev. A 54 3653

    [16]

    Vemuri G, Agarwal G S, Rao B D N 1996 Phys. Rev. A 53 2842

    [17]

    Javan A, Kocharovskaya O, Lee H, Scully M O 2002 Phys. Rev. A 66 013805

    [18]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [19]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95

    [20]

    Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, Kennedy T A B, Kuzmich A 2009 Nat. Phys. 5 100

  • [1]

    Boller K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [2]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C 1999 Nature 397 594

    [4]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [5]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [6]

    Boyer V, McCormick C F, Arimondo E, Lett P D 2007 Phys. Rev. Lett. 99 143601

    [7]

    Boyer V, Marino A M, Pooser R C, Lett P D 2008 Science 321 544

    [8]

    van der Wal C H, Eisaman M D, André A, Walsworth R L, Phillips D F, Zibrov A S, Lukin M D 2003 Science 301 196

    [9]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731

    [10]

    Jain M, Xia H, Yin G Y, Merriam A J, Harris S E 1996 Phys. Rev. Lett. 77 4326

    [11]

    Yavuz D D, Walker D R, Shverdin M Y, Yin G Y, Harris S E 2003 Phys. Rev. Lett. 91 233602

    [12]

    Harada K, Kanbashi T, Mitsunaga M 2006 Phys. Rev. A 73 013807

    [13]

    Li Y Q, Xiao M 1995 Phys. Rev. A 51 R2703

    [14]

    Rapol U D, Wasan A, Natarajan V 2003 Phys. Rev. A 67 053802

    [15]

    Zhu Y F, Wasserlauf T N 1996 Phys. Rev. A 54 3653

    [16]

    Vemuri G, Agarwal G S, Rao B D N 1996 Phys. Rev. A 53 2842

    [17]

    Javan A, Kocharovskaya O, Lee H, Scully M O 2002 Phys. Rev. A 66 013805

    [18]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [19]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95

    [20]

    Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, Kennedy T A B, Kuzmich A 2009 Nat. Phys. 5 100

  • [1] 裴丽娅. 基于共振Raman增强的三阶非线性过程. 物理学报, 2020, 69(16): 164203. doi: 10.7498/aps.69.20200418
    [2] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [3] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [4] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [5] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [6] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [7] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [8] 张岩, 刘一谋, 韩明, 王刚成, 崔淬砺, 郑泰玉. 二维电磁感应光子带隙的动态生成与调控. 物理学报, 2014, 63(22): 224203. doi: 10.7498/aps.63.224203
    [9] 裴丽娅, 左战春, 吴令安, 傅盘铭. 受激Raman谱中的宏观极化干涉. 物理学报, 2013, 62(18): 184209. doi: 10.7498/aps.62.184209
    [10] 于淼, 张 岩, 房博, 高俊艳, 高金伟, 吴金辉. 电磁感应双光子带隙的产生和控制. 物理学报, 2012, 61(13): 134204. doi: 10.7498/aps.61.134204
    [11] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [12] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 物理学报, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [13] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [14] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [16] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [17] 武海斌, 常 宏, 马 杰, 谢常德, 王 海. Λ型三能级原子系统中Raman跃迁增强的Kerr非线性效应. 物理学报, 2005, 54(8): 3632-3636. doi: 10.7498/aps.54.3632
    [18] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  2947
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-24
  • 修回日期:  2013-03-12
  • 刊出日期:  2013-06-05

铷蒸气Λ-型系统中的受激Raman谱与光泵效应

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190
    基金项目: 国家自然科学基金(批准号: 10974252, 11274376, 60978002)、国家重点基础研究发展计划(批准号: 2010CB922904)和国家高技术研究发展计划(批准号: 2011AA120102) 资助的课题.

摘要: 从理论和实验上研究了85Rb 原子蒸气D1线系统中的受激Raman现象. 在Λ-型能级系统中, 抽运光对弱探测光的影响有两部分: 受激Raman激发和光泵效应. 在一定的抽运光强度和失谐量条件下, 受激Raman谱表现为增益谱或损耗谱; 以光泵效应导致的吸收谱为背景时, 便分别形成了窄线宽透明窗口或线宽差异很大的吸收双线. 理论模拟和实验结果基本符合. 基于这些研究, 从新的角度阐述了在Λ-型系统中的电磁感应透明和Autler-Townes分裂这两个重要现象与受激Raman谱之间的关系.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回