搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于三层有源隔声结构误差传感的压电传感薄膜阵列及其优化设计

马玺越 陈克安 丁少虎 张冰瑞

引用本文:
Citation:

用于三层有源隔声结构误差传感的压电传感薄膜阵列及其优化设计

马玺越, 陈克安, 丁少虎, 张冰瑞

Optimization of piezoelectric sensor arrays in error sensing of active triple sound insulation structure

Ma Xi-Yue, Chen Ke-An, Ding Shao-Hu, Zhang Bing-Rui
PDF
导出引用
  • 基于平面声源的三层有源隔声结构系统易于实现且具有良好的低频隔声性能,实现该系统需解决的关键问题是误差信号的检测.本文将压电传感薄膜聚偏氟乙烯(polyvinylidene fluoride, PVDF)阵列检测简支梁辐射模态的理论拓展到二维结构, 并应用到三层隔声结构实现误差传感的优化设计.根据三层结构中特殊的能量传输规律, 对误差传感方案中目标函数的选取、PVDF数目确定以及传感系统优化等问题进行深入分析.研究表明, 由于辐射板能量主要集中在有限个振动模态上, 只需将少数经固定系数加权的PVDF薄膜输出电流求和即可获得前三阶辐射模态幅值.辐射模态幅值的检测值与理论值符合良好, 保证传感精度的同时有效简化了系统.
    The active triple sound insulation structure using planar loudspeaker as the secondary actuator can be easily implemented and has better sound insulation performance in the low frequency range. The key problem encountered when implementing such a control system is to sense the error signal which should be highly correlated with the radiated sound power. In this paper, the theory of sensing the radiation modes of simply supported beam using polyvinylidene fluoride (PVDF) arrays used in one-dimensional case is extended to two-dimensional structure, and then it is used in triple panel structure to optimally design the error sensing strategy. Based on the specific rule of sound energy transmission through triple panel structure, some key problems encountered in realizing the sensing system such as selection of the objective function, optimization of the number of PVDFs and implementing the sensing system, are analyzed thoroughly. The results obtained demonstrate that due to the fact that the majority of vibrating energy of radiated panel is stored in several limited number of panel modes, the amplitude of the first three order radiation modes can be obtained by simply summing the limited number of weighted PVDF film current output. And the weighted coefficient is fixed. The amplitudes of the radiation modes sensed by the proposed method are in good agreement with the theoretical value. The sensing accuracy of the error sensing system can be guaranteed, and this approach highly simplify the implementation of the error sensing system.
    • 基金项目: 高等学校博士学科点专项科研基金(批准号: 20096102110007)、航空科学基金(批准号: 2011ZA53004)和西北工业大学博士论文创新基金(批准号: CX201004)资助的课题.
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20096102110007), the Aeronautical Science Foundation of China (Grant No. 2011ZA53004), and the Doctorate Foundation of Northwestern Polytechnical University, China (Grant No. CX201004).
    [1]

    Sas P, Bao C, Augusztinovicz F, Desmet W 1995 J. Sound Vib. 180 609

    [2]

    Carneal J P, Fuller C R 1995 J. AIAA 33 618

    [3]

    Pan J, Bao C 1997 J. Acoust. Soc. Am. 103 1916

    [4]

    Bao C, Pan J 1997 J. Acoust. Soc. Am. 102 1664

    [5]

    Jakob A, Moser 2003 Appl. Acoust. 64 163

    [6]

    Jakob A, Moser M 2003 Appl. Acoust. 64 183

    [7]

    Carneal J P, Fuller C R 2004 J. Sound Vib. 272 749

    [8]

    Li Y Y, Cheng L 2006 J. Sound Vib. 297 1068

    [9]

    Zhu H, Rajamani R, Stelson K A 2002 J. Acoust. Soc. Am. 113 852

    [10]

    Chen K, Koopmann G H 2002 J. Vib. Acoust. 124 2

    [11]

    Chen K A, Koopmann G H 2003 Acta Acustica 28 279 (in Chinese) [陈克安, Koopmann G H 2003 声学学报 28 279]

    [12]

    Clark R L, Fuller C R 1992 J. Acoust. Soc. Am. 91 3321

    [13]

    Hill S G, Snyder S D, Tanaka N 2008 J. Sound Vib. 318 1050

    [14]

    Elliott S J, Johnson M E 1993 J. Acoust. Soc. Am. 94 2194

    [15]

    Mao Q B, Jiang Z 2001 Acta Acustica 26 277 (in Chinese) [毛崎波, 姜哲2001 声学学报 26 277]

    [16]

    Jin G Y, Zhang H T, Liu Z G, Yang T J 2011 J. Vib. Eng. 24 435 (in Chinese) [靳国永, 张洪田, 刘志刚, 杨铁军2011振动工程学报 24 435]

    [17]

    Mao Q B, Xu B L 2003 Acta Acustica 28 262 (in Chinese) [毛崎波, 徐柏龄2003声学学报 28 262]

    [18]

    Johnson M E, Elliott S J 1995 J. Acoust. Soc. Am. 98 2174

    [19]

    Charette F, Berry A 1997 J. Acoust. Soc. Am. 103 1493

    [20]

    Sors T C, Elliott S J 2002 J. Sound Vib. 258 867

    [21]

    Pan X, Sutton T J, Elliott S J 1998 J. Acoust. Soc. Am. 104 2828

    [22]

    Jin G Y, Liu Z G, Du J T, Yang T J 2009 Acta Acustica 34 342 (in Chinese) [靳国永, 刘志刚, 杜敬涛, 杨铁军2009 声学学报 34 342]

    [23]

    Mao Q, Xu B, Jiang Z Gu 2003 Appl. Acoust. 64 669

    [24]

    Chen K A 2003 Active Noise Control (Beijing: National Defense Industry Press) p267 (in Chinese) [陈克安 2003有源噪声控制(北京: 国防工业出版社) 第267页]

    [25]

    Chen K A, Chen G Y, Li S, Pan H R 2007 Acta Acustica 32 42 (in Chinese) [陈克安, 陈国跃, 李双, 潘浩然 2007 声学学报 32 42]

    [26]

    Lee C K, Moon F C 1990 J. Appl. Mech. 57 434

    [27]

    Fuller C R, Hansen C H, Snyder S D 1991 J. Sound Vib. 150 179

    [28]

    Borgiotti G V, Jones K E 1994 J. Acoust. Soc. Am. 96 3516

    [29]

    Li S, Chen K A 2007 Acta Acustica 32 171 (in Chinese) [李双, 陈克安 2007 声学学报 32 171]

  • [1]

    Sas P, Bao C, Augusztinovicz F, Desmet W 1995 J. Sound Vib. 180 609

    [2]

    Carneal J P, Fuller C R 1995 J. AIAA 33 618

    [3]

    Pan J, Bao C 1997 J. Acoust. Soc. Am. 103 1916

    [4]

    Bao C, Pan J 1997 J. Acoust. Soc. Am. 102 1664

    [5]

    Jakob A, Moser 2003 Appl. Acoust. 64 163

    [6]

    Jakob A, Moser M 2003 Appl. Acoust. 64 183

    [7]

    Carneal J P, Fuller C R 2004 J. Sound Vib. 272 749

    [8]

    Li Y Y, Cheng L 2006 J. Sound Vib. 297 1068

    [9]

    Zhu H, Rajamani R, Stelson K A 2002 J. Acoust. Soc. Am. 113 852

    [10]

    Chen K, Koopmann G H 2002 J. Vib. Acoust. 124 2

    [11]

    Chen K A, Koopmann G H 2003 Acta Acustica 28 279 (in Chinese) [陈克安, Koopmann G H 2003 声学学报 28 279]

    [12]

    Clark R L, Fuller C R 1992 J. Acoust. Soc. Am. 91 3321

    [13]

    Hill S G, Snyder S D, Tanaka N 2008 J. Sound Vib. 318 1050

    [14]

    Elliott S J, Johnson M E 1993 J. Acoust. Soc. Am. 94 2194

    [15]

    Mao Q B, Jiang Z 2001 Acta Acustica 26 277 (in Chinese) [毛崎波, 姜哲2001 声学学报 26 277]

    [16]

    Jin G Y, Zhang H T, Liu Z G, Yang T J 2011 J. Vib. Eng. 24 435 (in Chinese) [靳国永, 张洪田, 刘志刚, 杨铁军2011振动工程学报 24 435]

    [17]

    Mao Q B, Xu B L 2003 Acta Acustica 28 262 (in Chinese) [毛崎波, 徐柏龄2003声学学报 28 262]

    [18]

    Johnson M E, Elliott S J 1995 J. Acoust. Soc. Am. 98 2174

    [19]

    Charette F, Berry A 1997 J. Acoust. Soc. Am. 103 1493

    [20]

    Sors T C, Elliott S J 2002 J. Sound Vib. 258 867

    [21]

    Pan X, Sutton T J, Elliott S J 1998 J. Acoust. Soc. Am. 104 2828

    [22]

    Jin G Y, Liu Z G, Du J T, Yang T J 2009 Acta Acustica 34 342 (in Chinese) [靳国永, 刘志刚, 杜敬涛, 杨铁军2009 声学学报 34 342]

    [23]

    Mao Q, Xu B, Jiang Z Gu 2003 Appl. Acoust. 64 669

    [24]

    Chen K A 2003 Active Noise Control (Beijing: National Defense Industry Press) p267 (in Chinese) [陈克安 2003有源噪声控制(北京: 国防工业出版社) 第267页]

    [25]

    Chen K A, Chen G Y, Li S, Pan H R 2007 Acta Acustica 32 42 (in Chinese) [陈克安, 陈国跃, 李双, 潘浩然 2007 声学学报 32 42]

    [26]

    Lee C K, Moon F C 1990 J. Appl. Mech. 57 434

    [27]

    Fuller C R, Hansen C H, Snyder S D 1991 J. Sound Vib. 150 179

    [28]

    Borgiotti G V, Jones K E 1994 J. Acoust. Soc. Am. 96 3516

    [29]

    Li S, Chen K A 2007 Acta Acustica 32 171 (in Chinese) [李双, 陈克安 2007 声学学报 32 171]

  • [1] 冯婕, 崔益豪, 李豫东, 文林, 郭旗. CMOS有源像素传感器辐射损伤对星敏感器星图识别影响机理与识别算法. 物理学报, 2022, 71(18): 184208. doi: 10.7498/aps.71.20220894
    [2] 谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像. 物理学报, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [3] 杨生辉, 董明义, 渠超越, 田兴成, 董静, 吴冶, 马骁妍, 章红宇, 江晓山, 欧阳群, 李岚坤, 郑国恒. 基于单片有源像素传感器的探测模块测试研究. 物理学报, 2021, 70(17): 170702. doi: 10.7498/aps.70.20210464
    [4] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [5] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [6] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [7] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [8] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究. 物理学报, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [9] 王燕, 邹男, 梁国龙. 强多途环境下水听器阵列位置近场有源校正方法. 物理学报, 2015, 64(2): 024304. doi: 10.7498/aps.64.024304
    [10] 朱乐永, 高娅娜, 张建华, 李喜峰. 溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管. 物理学报, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [11] 汪波, 李豫东, 郭旗, 刘昌举, 文林, 任迪远, 曾骏哲, 玛丽娅. 质子辐射下互补金属氧化物半导体有源像素传感器暗信号退化机理研究. 物理学报, 2015, 64(8): 084209. doi: 10.7498/aps.64.084209
    [12] 方伟, 宋鑫宏. 基于Voronoi图盲区的无线传感器网络覆盖控制部署策略. 物理学报, 2014, 63(22): 220701. doi: 10.7498/aps.63.220701
    [13] 汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英. 60Co-γ射线辐照CMOS有源像素传感器诱发暗信号退化的机理研究. 物理学报, 2014, 63(5): 056102. doi: 10.7498/aps.63.056102
    [14] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场. 物理学报, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [15] 张敬花, 乔学光, 冯忠耀, 忽满利, 高宏, 周锐, 杨扬. 基于弯曲伸张结构的光纤光栅传感研究. 物理学报, 2012, 61(5): 054215. doi: 10.7498/aps.61.054215
    [16] 陈林辉, 饶长辉. 点源信标相关哈特曼-夏克波前传感器光斑偏移测量误差分析. 物理学报, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [17] 张海燕, 曹亚萍, 于建波, 陈先华. 采用单个压电传感器的单模式兰姆波激发频率的选择. 物理学报, 2011, 60(11): 114301. doi: 10.7498/aps.60.114301
    [18] 张艳艳, 饶长辉, 李梅, 马晓燠. 基于电子倍增电荷耦合器件的哈特曼-夏克波前传感器质心探测误差分析. 物理学报, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [19] 袁广才, 徐 征, 赵谡玲, 张福俊, 姜薇薇, 黄金昭, 宋丹丹, 朱海娜, 黄金英, 徐叙瑢. 对以并五苯和酞菁铜为不同有源层的有机薄膜晶体管特性研究. 物理学报, 2008, 57(9): 5911-5917. doi: 10.7498/aps.57.5911
    [20] 张碧星, 汪承灏, Anders Bostr?m. 压电条SH声辐射场研究. 物理学报, 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
计量
  • 文章访问数:  3137
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-11
  • 修回日期:  2013-03-07
  • 刊出日期:  2013-06-05

用于三层有源隔声结构误差传感的压电传感薄膜阵列及其优化设计

  • 1. 西北工业大学航海学院环境工程系, 西安 710072
    基金项目: 高等学校博士学科点专项科研基金(批准号: 20096102110007)、航空科学基金(批准号: 2011ZA53004)和西北工业大学博士论文创新基金(批准号: CX201004)资助的课题.

摘要: 基于平面声源的三层有源隔声结构系统易于实现且具有良好的低频隔声性能,实现该系统需解决的关键问题是误差信号的检测.本文将压电传感薄膜聚偏氟乙烯(polyvinylidene fluoride, PVDF)阵列检测简支梁辐射模态的理论拓展到二维结构, 并应用到三层隔声结构实现误差传感的优化设计.根据三层结构中特殊的能量传输规律, 对误差传感方案中目标函数的选取、PVDF数目确定以及传感系统优化等问题进行深入分析.研究表明, 由于辐射板能量主要集中在有限个振动模态上, 只需将少数经固定系数加权的PVDF薄膜输出电流求和即可获得前三阶辐射模态幅值.辐射模态幅值的检测值与理论值符合良好, 保证传感精度的同时有效简化了系统.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回