搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳恒磁场对Fe-Fe50 wt.%Si扩散偶中间相生长的影响

孙宗乾 钟云波 范丽君 龙琼 郑天祥 任维丽 雷作胜 王秋良 王晖 戴银明

引用本文:
Citation:

稳恒磁场对Fe-Fe50 wt.%Si扩散偶中间相生长的影响

孙宗乾, 钟云波, 范丽君, 龙琼, 郑天祥, 任维丽, 雷作胜, 王秋良, 王晖, 戴银明

Effect of magnetic field on growth of intermetallic compound layers in Fe-Fe50wt.%Si diffusion couple

Sun Zong-Qian, Zhong Yun-Bo, Fan Li-Jun, Long Qiong, Zheng Tian-Xiang, Ren Wei-Li, Lei Zuo-Sheng, Wang Qiu-Liang, Wang Hui, Dai Yin-Ming
PDF
导出引用
  • 本文考察了Fe-Fe50 wt.%Si扩散偶在1200℃ 无磁场以及稳恒磁场下扩散层生长规律. 利用真空浇注强制冷却技术制备Fe-Fe50 wt.%Si扩散偶, 将制备的扩散偶进行1200℃不同磁感应强度下的热处理. 对获得热处理后试样进行SEM与EDS线扫描分析, 结果表明, 无论无磁场还是稳恒磁场下Fe-Fe50 wt.%Si扩散偶均生成两个扩散层, 即FeSi相层和Fe-Si固溶体层, 并且发现0.8 T下的两个扩散层宽度均小于0 T磁场下试样. 按照抛物线规律, 计算了扩散偶中间扩散层的互扩散系数, 发现0.8 T磁场下FeSi相层和Fe-Si固溶体层的互扩散系数较无磁场下 分别降低了26.7%与34.1%. 通过对磁吉布斯自由能的计算, 发现0.8 T磁场对扩散激活能Q的影响不足以影响扩散过程. 但扩散过程中原子振动频率ν会受到磁场的影响, 进而影响扩散常数D0, 磁场对原子振动频率的影响可以用拉莫尔旋进理论进行解释.
    In this paper, Fe-Fe50 wt.%Si diffusion couples are subjected to 1200℃ heat treatment in static magnetic field. Fe-Fe50 wt.% Si diffusion couples were prepared by vacuum casting technology and later sectioned and polished for scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies before heat treated. Microstructures of the treated samples which were polished first were analyzed by SEM and EDS; results show that the phase components of the interfacial intermetallic compound layers are FeSi phase layer and Fe-Si solid solution layer whether the samples were treated with or without magnetic field, and the layer widths in the samples treated with magnetic field are smaller than those without magnetic field. According to the parabolic law, the interdiffusion coefficients of the interfacial intermetallic compound layers were calculated and the interdiffusion coefficients of FeSi phase and Fe-Si solution under a field of 0.8 T are reduced by 26.7% and 34.1%. The Gibbs energy due to applied field was calculated, data analysis shows that the reduction of interfacial intermetallic compound layer coefficients is attributed to the decrease of frequency factor, not the activation energy. Decrease in layer thickness decrease is suggested to be related to the retardation of atomic diffusion resulting from the magnetic field, and a possible theory based on Larmor precession is given to explain this effect.
    • 基金项目: 国家自然科学基金-钢铁联合基金重点项目(批准号: 51034010)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51034010).
    [1]

    Liang L F, Wang X, Zhang S H 2001 Hot Working Technology 5 15 (in Chinese) [梁龙飞, 王绪, 章守华 2001 热加工工艺 5 15]

    [2]

    Tomoyuki K, Yoshihiro S, Toshio S, Ken'ichi S, Yuki M, Koichi K 1999 Materials Transactions 40 100

    [3]

    Watanabe T, Tsurekawa S, Zhao X, Zuo L 2006 Scripta Materialia 54 969

    [4]

    Liu X T, Cui J Z, Yu F X 2004 Journal of Materials Science 39 2935

    [5]

    Ren X, Chen G Q, Zhou W L, Wu C W, Zhang J S 2009 Journal of Alloys and Compounds 472 525

    [6]

    Hiromichi F, Sadahiro T 2011 Phys. Rev. B 83 0514412

    [7]

    Ren X, Zhou W L, Chen G Q, Huang Z H, Zhang J S 2007 Journal of Materials Engineering 8 41 (in Chinese) [任晓, 周文龙, 陈国清, 黄朝晖, 张俊善 2007 材料工程 8 41]

    [8]

    Li Z F, Dong J, Zeng S Q, Lu C, Ding W J, Ren Z M 2007 Journal of Alloys and C ompounds 440 132

    [9]

    Hideo N, Sadamichi M, Yoshihira A, Masahiro K 1985 Tansactions of the Japan Institute of Metals 26 1

    [10]

    Zhou S C, Pei W, Sha Y H, Zuo L 2007 Journal of Northeastern University(Natural Science) 28 1131 (in Chinese) [周世春, 裴伟, 沙玉辉, 左良 2007 东北大学学报(自然科学版) 28 1131]

    [11]

    Bacaltchuk C, Castello-Branco G, Ebrahimi M, Garmestani H, Rollett A 2003 Scripta Materialia 48 1343

    [12]

    An Z G, Hou H Y 2012 Southern Metals 187 11 (in Chinese) [安治国, 侯环宇 2012 南方金属 187 11]

    [13]

    Borg R, Lai D 1970 Journal of Appl. Phys. 41 5193

    [14]

    Baldwin N, Ivey D 1995 Journal of Phase Equilibria 16 300

    [15]

    Zhang Y, Ivey D 1998 Journal of Materials Science 33 3131

    [16]

    Gao M C, Bennett T, Rollett A, Laughlin D 2006 Journal of Physics D: Applied Physics 39 2890

    [17]

    Hu G X, Cai X, Rong Y H 2006 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) p145 (in Chinese) [胡赓祥, 蔡珣, 戎咏华 2006 材料科学基础 (上海:上海交通大学出版社) 第145页]

    [18]

    Sigurds A, Miller D 1960 Journal of Appl. Phys. 31 986

    [19]

    Jaccarino V, Wertheim G, Wernick J, Walker L, Sigurds A 1967 Phys. Rev. 160 476

    [20]

    Chikazumi S 1984 Physics of Ferromagnetic Materials (vol.2) (Beijing: Metallurgical Industry Press) p4 (in Chinese) [近角聪信著 (杨膺善 韩俊德译) 1984 磁性体手册 (中卷) (北京: 冶金工业出版社) 第4页]

    [21]

    Stephan K, Michael Z, Oliver O, Klaus D 2004 Solid State Ionics 172 407

    [22]

    Mehrer H, Eggersmann M, Gude A, Salamon M, Sepiol B 1997 Materials Science and Engineering A 239 889

    [23]

    Gou J, Zhao X F, Peng Y X 2010 Atomic and Nuclear Physics (Beijing: National Defense Industry Press) P86 (in Chinese) [郭江, 赵晓凤, 彭宜兴 2010 原子及原子核物理 (北京: 国防工业出版社) 第86页]

  • [1]

    Liang L F, Wang X, Zhang S H 2001 Hot Working Technology 5 15 (in Chinese) [梁龙飞, 王绪, 章守华 2001 热加工工艺 5 15]

    [2]

    Tomoyuki K, Yoshihiro S, Toshio S, Ken'ichi S, Yuki M, Koichi K 1999 Materials Transactions 40 100

    [3]

    Watanabe T, Tsurekawa S, Zhao X, Zuo L 2006 Scripta Materialia 54 969

    [4]

    Liu X T, Cui J Z, Yu F X 2004 Journal of Materials Science 39 2935

    [5]

    Ren X, Chen G Q, Zhou W L, Wu C W, Zhang J S 2009 Journal of Alloys and Compounds 472 525

    [6]

    Hiromichi F, Sadahiro T 2011 Phys. Rev. B 83 0514412

    [7]

    Ren X, Zhou W L, Chen G Q, Huang Z H, Zhang J S 2007 Journal of Materials Engineering 8 41 (in Chinese) [任晓, 周文龙, 陈国清, 黄朝晖, 张俊善 2007 材料工程 8 41]

    [8]

    Li Z F, Dong J, Zeng S Q, Lu C, Ding W J, Ren Z M 2007 Journal of Alloys and C ompounds 440 132

    [9]

    Hideo N, Sadamichi M, Yoshihira A, Masahiro K 1985 Tansactions of the Japan Institute of Metals 26 1

    [10]

    Zhou S C, Pei W, Sha Y H, Zuo L 2007 Journal of Northeastern University(Natural Science) 28 1131 (in Chinese) [周世春, 裴伟, 沙玉辉, 左良 2007 东北大学学报(自然科学版) 28 1131]

    [11]

    Bacaltchuk C, Castello-Branco G, Ebrahimi M, Garmestani H, Rollett A 2003 Scripta Materialia 48 1343

    [12]

    An Z G, Hou H Y 2012 Southern Metals 187 11 (in Chinese) [安治国, 侯环宇 2012 南方金属 187 11]

    [13]

    Borg R, Lai D 1970 Journal of Appl. Phys. 41 5193

    [14]

    Baldwin N, Ivey D 1995 Journal of Phase Equilibria 16 300

    [15]

    Zhang Y, Ivey D 1998 Journal of Materials Science 33 3131

    [16]

    Gao M C, Bennett T, Rollett A, Laughlin D 2006 Journal of Physics D: Applied Physics 39 2890

    [17]

    Hu G X, Cai X, Rong Y H 2006 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) p145 (in Chinese) [胡赓祥, 蔡珣, 戎咏华 2006 材料科学基础 (上海:上海交通大学出版社) 第145页]

    [18]

    Sigurds A, Miller D 1960 Journal of Appl. Phys. 31 986

    [19]

    Jaccarino V, Wertheim G, Wernick J, Walker L, Sigurds A 1967 Phys. Rev. 160 476

    [20]

    Chikazumi S 1984 Physics of Ferromagnetic Materials (vol.2) (Beijing: Metallurgical Industry Press) p4 (in Chinese) [近角聪信著 (杨膺善 韩俊德译) 1984 磁性体手册 (中卷) (北京: 冶金工业出版社) 第4页]

    [21]

    Stephan K, Michael Z, Oliver O, Klaus D 2004 Solid State Ionics 172 407

    [22]

    Mehrer H, Eggersmann M, Gude A, Salamon M, Sepiol B 1997 Materials Science and Engineering A 239 889

    [23]

    Gou J, Zhao X F, Peng Y X 2010 Atomic and Nuclear Physics (Beijing: National Defense Industry Press) P86 (in Chinese) [郭江, 赵晓凤, 彭宜兴 2010 原子及原子核物理 (北京: 国防工业出版社) 第86页]

  • [1] 刘敏霞. 用两带Ginzburg-Landau理论分析两带超导体Lu2Fe3Si5的表面临界磁场. 物理学报, 2011, 60(1): 017401. doi: 10.7498/aps.60.017401
    [2] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [3] 李胜斌, 李晓娜, 董闯, 姜辛. 基于β-FeSi2的(Fe, M)Si2三元合金相形成规律. 物理学报, 2010, 59(6): 4267-4278. doi: 10.7498/aps.59.4267
    [4] 牛华蕾, 李晓娜, 胡冰, 董闯, 姜辛. 纳米β-FeSi2/a-Si多层膜室温光致发光分析. 物理学报, 2009, 58(6): 4117-4122. doi: 10.7498/aps.58.4117
    [5] 胡 冰, 李晓娜, 董 闯, 姜 辛. 磁控溅射法合成纳米β-FeSi2/a-Si多层结构. 物理学报, 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [6] 闫文盛, 殷世龙, 范江玮, 李玉芝, 刘文汉, 郝绿原, 潘志云, 韦世强. 退火诱导亚稳态Fe80Cu20合金固溶体的结构相变. 物理学报, 2005, 54(12): 5707-5712. doi: 10.7498/aps.54.5707
    [7] 倪 经, 蔡建旺, 赵见高, 颜世申, 梅良模, 朱世富. Fe/Si多层膜的层间耦合与界面扩散. 物理学报, 2004, 53(11): 3920-3923. doi: 10.7498/aps.53.3920
    [8] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
    [9] 胡西多, 林德明, 林光明, 郑国桢. 纳米晶Fe73.5Cu1Nb3Si13.5B9晶间非晶相结构弛豫与模量的振荡变化. 物理学报, 2000, 49(1): 102-105. doi: 10.7498/aps.49.102
    [10] 刘应开, 侯德东, 周效锋, 刘佐权. 非晶(Fe0.99Mo0.01)78Si9B13,Fe78Si9B13合金激波晶化主相α-Fe变化研究. 物理学报, 1999, 48(12): 2304-2307. doi: 10.7498/aps.48.2304
    [11] 周铁军, 王敦辉, 章建荣, 都有为, 王锦辉, 陈允鸿. 机械合金化Fe-Si合金的微结构与磁性. 物理学报, 1997, 46(11): 2250-2257. doi: 10.7498/aps.46.2250
    [12] 黄卓和, 陈传誉, 陈芝得, 张树群. 稳恒电、磁场中量子阱内极化子的基态能量. 物理学报, 1994, 43(1): 91-98. doi: 10.7498/aps.43.91
    [13] 刘宜华, 马小丁, 梅良模. FeSi/Si成份调制膜的二维磁性和死层效应. 物理学报, 1990, 39(12): 2005-2010. doi: 10.7498/aps.39.2005
    [14] 胡伯平, 张寿恭. Si对Nd2Fe14B四方相结构和磁性的影响. 物理学报, 1987, 36(10): 1364-1370. doi: 10.7498/aps.36.1364
    [15] 胡伯平, 张寿恭. Nd2(Fe,Si)17合金的结构与磁性. 物理学报, 1986, 35(3): 352-358. doi: 10.7498/aps.35.352
    [16] 秦志成, 何寿安, 刘振兴, 王文魁. 非晶态合金La72Si28晶化过程中生成的新亚稳超导相. 物理学报, 1986, 35(5): 577-582. doi: 10.7498/aps.35.577
    [17] 李子荣, 王刚, 陈立泉, 车广灿, 王连忠. Li3VO4-Li4TO4(T=Ge,Si)固溶体离子导体7Li的NMR研究. 物理学报, 1985, 34(2): 263-268. doi: 10.7498/aps.34.263
    [18] 沈中毅, 张云, 殷岫君, 何寿安, 吴谦, 吴自勤. (Fe0.1Co0.55Ni0.35)78Si8B14金属玻璃的晶化过程及压力的影响(Ⅰ)——晶化时的相析出过程. 物理学报, 1983, 32(9): 1159-1169. doi: 10.7498/aps.32.1159
    [19] 钱祥荣. Fe-Si-Al合金的中子衍射研究. 物理学报, 1981, 30(7): 887-894. doi: 10.7498/aps.30.887
    [20] 徐温崇, 苏绣锦. Fe-Si-Al合金结构的研究. 物理学报, 1978, 27(5): 576-582. doi: 10.7498/aps.27.576
计量
  • 文章访问数:  4551
  • PDF下载量:  666
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-10
  • 修回日期:  2013-03-11
  • 刊出日期:  2013-07-05

/

返回文章
返回