-
通过高温固相法制备了不同Er3+掺杂浓度的KPb2Br5多晶粉末样品. 由980 nm半导体激光器激发下得到的上转换发射光谱显示, 当掺杂浓度为2.5 mol%时, 样品主要表现为530 nm 和550 nm上转换发射, 分别对应激发态2H11/2和4S3/2向基态4I15/2的跃迁; 掺杂浓度增加到5 mol%时样品以490 nm上转换发射为主, 对应由激发态4F7/2向4I15/2的跃迁; 当掺杂浓度达到7.5 mol%时, 样品的上转换发射强度相比低浓度时大幅度下降, 主要以激发态4F9/2 向基态4I15/2跃迁的690 nm处发光为主. 利用第一性原理结合Judd-Ofelt理论讨论认为, Er3+ 离子优先替代Pb (1) 的位置, 随着浓度的提高, 部分Er3+ 离子会替代Pb (2) 格位上的离子, 不同晶格位置的Er3+ 离子所处的晶体场的对称性有所不同, 从而影响了发光中心不同能级的跃迁概率, 体现在上转换发光光谱的差异上. 蓝、绿区域的上转换发光在高浓度掺杂下显示了明显的浓度猝灭, 此时样品以红色上转换发光为主.
-
关键词:
- KPb2Br5:Er3+ /
- Judd-Ofelt理论 /
- 第一性原理 /
- 上转换发射
Different concentrations of Er3+ doped in KPb2Br5 powders are prepared by solid-state reaction method. The upconversion spectra under the excitation of 980 nm laser are characterized and show the concentration-related change in emission band. With the doping concentration of 2.5 mol%, the sample exhibits mainly two green emission peaks at 530 nm and 550 nm, which correspond to the transitions of 2H11/2 and 4S3/2 levels to ground state 4I15/2 respectively. When the doping concentration of Er3+ is increased to 5 mol%, the upconversion emission is dominated by 490 nm, related to the transition of 4F7/2 to 4I15/2. Increasing the doping concentration up to 7.5 mol%, the emission quenching is observed throughout and the emission band appears mainly at 690 nm which comes from the transition of 4F9/2 to 4I15/2. The influence of possible substitution of Er3+ on lattice constant and upconversion emission properties of KPb2Br5 are discussed based on the first-principles calculation and Judd-Ofelt theory. The results show that the substitution of Er3+ in KPb2Br5 is dominated for Pb(1) in low concentration. When increasing the Er3+ doping concentration, it may substitute for Pb(2) Pb(1) and Pb(2) sites. The impact of the symmetry of the crystal field on the site-selective doping of Er3+ is proposed to explain the variation of upconversion luminescence spectrum.[1] Amancio C T, Assumpcao T A, Kassab L R 2010 25th Symposium on Microelectronics Technology and Devices Sao Paulo, Brazil, September 6–9, 2010 p237
[2] Moglia F, Reichert F, Huber G 2012 Advances in Optical Materials (AIOM) San Diego, CA, February 1, 2012 pIW5D.6
[3] Chatterjee D K, Gnanasammandhan M K, Zhang Y 2010 Small 6 2781
[4] Patra A, Friend C S, Kapoor R, Paras N P 2003 Appl. Phys. Lett. 83 284
[5] Liu M Y, Sun W J 2011 Acta Phys. Sin. 60 077804 (in Chinese) [刘名扬, 孙维瑾 2011 物理学报 60 077804]
[6] Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Acta Phys. Sin. 59 300 (in Chinese) [黄毅华, 江东亮, 张景贤, 林庆玲 2010 物理学报 59 300]
[7] Hömmerich U, Nyein E E, Trivedi S B 2005 Journal of Luminescence 113 1
[8] Merkulov A A, Isaenko L I, Pashkov V M, Mazur V G, Virovets A V, Yu D 2005 J. Struct. Chem. 46 103
[9] Rademaker K, Heumann E, Huber G, Payne S A, Krupke W F, Isaenko L I, Burger A 2005 Opt. Lett. 30 729
[10] Yu B F, Li M Y, Liu J, Guo D Y, Pei L, Zhao X Z 2008 J. Phys. D Appl. Phys. 41 065003
[11] Jiang C G, Fang L, Shen M R, Zheng F G, Wu X L 2009 Appl. Phys. Lett. 94 071110
[12] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 11 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 11]
[13] Wang X W, Liu W, Yang Y, Zhang L, Yun J N, Zhang Z Y 2011 Symposium on Photonics and Optoelectronics (SOPO) Wuhan, China, May 16–18, 2011 p1
[14] Guo K, Man Z Y, Cao Q G, Chen H H, Guo X X, Zhao J T 2011 Chem. Phys. 380 54
[15] Judd B R, 1962 Phys. Rev. 127 750
[16] Ofelt G S, 1962 J. Chem. Phys. 37 511
[17] Huang P, Chen D Q, Yu Y L, Wang Y S 2010 J. Alloys Compd 490 74
[18] Cascales C, Fernandez J, Balda R 2005 Opt. Express 13 2141
[19] LIN L S, XUE Y L, JIANG Q C 2008 Journal of East China Normal University (Natural Sc) 3 109 [林良书, 薛燕陵, 蒋器成 2008 华东师范大学学报 (自然科学版) 3 109]
[20] Beck H P, Clicque G, Nau H 1986 Z. Anorg. Allg. Chem. 536 35
[21] Balda R, Garcia-Adeva A J, Voda M, Fernandez J 2004 Phys. Rev. B 69 205203
-
[1] Amancio C T, Assumpcao T A, Kassab L R 2010 25th Symposium on Microelectronics Technology and Devices Sao Paulo, Brazil, September 6–9, 2010 p237
[2] Moglia F, Reichert F, Huber G 2012 Advances in Optical Materials (AIOM) San Diego, CA, February 1, 2012 pIW5D.6
[3] Chatterjee D K, Gnanasammandhan M K, Zhang Y 2010 Small 6 2781
[4] Patra A, Friend C S, Kapoor R, Paras N P 2003 Appl. Phys. Lett. 83 284
[5] Liu M Y, Sun W J 2011 Acta Phys. Sin. 60 077804 (in Chinese) [刘名扬, 孙维瑾 2011 物理学报 60 077804]
[6] Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Acta Phys. Sin. 59 300 (in Chinese) [黄毅华, 江东亮, 张景贤, 林庆玲 2010 物理学报 59 300]
[7] Hömmerich U, Nyein E E, Trivedi S B 2005 Journal of Luminescence 113 1
[8] Merkulov A A, Isaenko L I, Pashkov V M, Mazur V G, Virovets A V, Yu D 2005 J. Struct. Chem. 46 103
[9] Rademaker K, Heumann E, Huber G, Payne S A, Krupke W F, Isaenko L I, Burger A 2005 Opt. Lett. 30 729
[10] Yu B F, Li M Y, Liu J, Guo D Y, Pei L, Zhao X Z 2008 J. Phys. D Appl. Phys. 41 065003
[11] Jiang C G, Fang L, Shen M R, Zheng F G, Wu X L 2009 Appl. Phys. Lett. 94 071110
[12] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 11 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 11]
[13] Wang X W, Liu W, Yang Y, Zhang L, Yun J N, Zhang Z Y 2011 Symposium on Photonics and Optoelectronics (SOPO) Wuhan, China, May 16–18, 2011 p1
[14] Guo K, Man Z Y, Cao Q G, Chen H H, Guo X X, Zhao J T 2011 Chem. Phys. 380 54
[15] Judd B R, 1962 Phys. Rev. 127 750
[16] Ofelt G S, 1962 J. Chem. Phys. 37 511
[17] Huang P, Chen D Q, Yu Y L, Wang Y S 2010 J. Alloys Compd 490 74
[18] Cascales C, Fernandez J, Balda R 2005 Opt. Express 13 2141
[19] LIN L S, XUE Y L, JIANG Q C 2008 Journal of East China Normal University (Natural Sc) 3 109 [林良书, 薛燕陵, 蒋器成 2008 华东师范大学学报 (自然科学版) 3 109]
[20] Beck H P, Clicque G, Nau H 1986 Z. Anorg. Allg. Chem. 536 35
[21] Balda R, Garcia-Adeva A J, Voda M, Fernandez J 2004 Phys. Rev. B 69 205203
计量
- 文章访问数: 5393
- PDF下载量: 870
- 被引次数: 0