搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非Kolmogorov大气湍流对高斯列阵光束扩展的影响

陆璐 季小玲 邓金平 马媛

引用本文:
Citation:

非Kolmogorov大气湍流对高斯列阵光束扩展的影响

陆璐, 季小玲, 邓金平, 马媛

Influence of non-Kolmogorov turbulence on the spreading of Gaussian array beams

Lu Lu, Ji Xiao-Ling, Deng Jin-Ping, Ma Yuan
PDF
导出引用
  • 本文推导出了高斯列阵光束在非Kolmogorov大气湍流中传输的瑞利区间zR、湍流距离zT和远场发散角θ的解析表达式,研究了非Kolmogorov湍流的广义指数α和列阵光束的合成方式对高斯列阵光束扩展的影响. 研究表明:不论相干还是非相干合成高斯列阵光束,zR,zT和θ均随着α的增加而呈非单调变化. 当α=3.108时,zR和zT取极小值,而θ取极大值,即当α=3.108时高斯列阵光束扩展最厉害,光束扩展受湍流影响也最厉害. 非相干合成高斯列阵光束扩展比相干合成的要大,但受非Kolmogorov湍流影响却要小. 特别值得指出的是:当自由空间光束衍射较小时,有zT zR,即在瑞利区间范围内大气湍流就对光束扩展有影响;而当自由空间光束衍射较大时,有zT > zR,即在瑞利区间范围内大气湍流对光束扩展几乎没有影响.
    The expressions for the Rayleigh range zR, the turbulence distance zT and the far-field angle θ of Gaussian array beams propagating through non-Kolmogorov turbulence are derived. Influence of generalized exponent factor α of the atmospheric power spectrum and the type of beam combinations on the spreading of Gaussian array beams is studied. It is shown that for both coherent and incoherent combinations, the dependence of zR, zT and θ on α is not monotonic. When α=3.108, zR and zT reach their minima, and θ reaches its maximum. This means that the spreading is largest, and the spreading is enormously affected by turbulence when α=3.108. For the incoherent combination the spreading is larger than that for the coherent combination, but for the incoherent combination the spreading is less affected by turbulence than that for the coherent combination. It may be that, for the small free-space diffraction we have zT zR, i.e., the spreading is affected by turbulence within the Rayleigh range; for the large free-space diffraction we have zT > zR, i.e., the spreading is less affected by the turbulence within the Rayleigh range.
    • 基金项目: 国家自然科学基金(批准号:61178070)和四川高校科研创新团队建设计划(批准号:12TD008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178070), and the financial support from Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province (Grant No. 12TD008).
    [1]

    Strohschei J D, Herb J J, Clarence E C 1988 Appl. Opt. 37 1045

    [2]

    Brunel M, Floch A L, Bretenaker F, Marty J, Molva E 1988 Appl. Opt. 37 2402

    [3]

    Fante R L 1985 Progress in Optics XXⅡ: Wave propagation in random media: a systems approach, Chap. VI edited by Wolf E (Elsevier, Amsterdam)

    [4]

    Anddrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham, Washington: SPIE Press)

    [5]

    Ji X L, Eyyuboglu H T, Baykal Y 2010 Opt. Express 18 6922

    [6]

    Zhang E T, Ji X L, L B D 2009 Chin. Phys. B 18 571

    [7]

    Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592

    [8]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 物理学报 56 6754]

    [9]

    Dan Y Q, Zhang B 2009 Opt. Lett. 34 563

    [10]

    Mao H D, Zhao D M 2010 Opt. Express 18 1741

    [11]

    Zhou G Q 2011 Opt. Express 19 3945

    [12]

    Li Y Q Wu Z S 2012 Chin. Phys. B 21 054203

    [13]

    Li X Q, Ji X L, Zhu J H 2013 Acta Phys. Sin. 62 044217 (in Chinese) [李晓庆, 季小玲, 朱建华 2013 物理学报 62 044217]

    [14]

    Ma Y, Ji X L Acta Phys. Sin. 62 094214 (in Chinese) [马媛, 季小玲 2013 物理学报 62 094214]

    [15]

    Kolmogorov A N 1941 C. R. Acad. Sci. URSS 30 301

    [16]

    Rao C H, Jiang W H, Ling N 2000 J. Mod. Opt. 47 1111

    [17]

    Zilberman A, Golbraikh E, Kopeika N S 2005 Proc. SPIE 5987 598702

    [18]

    Toselli I, Andrews L C, Phillips R L, Ferrero V 2007 Proc. SPIE 6551 65510E-1

    [19]

    Toselli I, Andrews L C, Phillips R L, Ferrero V 2008 Opt. Eng. 47 026003

    [20]

    Wu G H, Guo H, S. Yu S, Luo B 2010 Opt. Lett. 35 715

    [21]

    Shchepakina E and Korotkova O 2010 Opt. Express 18 10650

    [22]

    He X M, L B D 2011 Chin. Phys. B 20 094210

    [23]

    Huang Y P, Zhao G P, Xiao X, Wang F H 2012 Acta Phys. Sin. 61 144202 [黄永平, 赵光普, 肖希, 王藩侯 2012 物理学报 61 144202]

    [24]

    He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 物理学报 61 054201]

    [25]

    Deng J P, Ji X L, Lu L 2013 Acta Phys. Sin. 62 144211 (in Chinese) [邓金平, 季小玲, 陆璐 2013 物理学报 62 144211]

    [26]

    Tao R M, Si L, Ma Y X, Zhou P, Liu Z J 2012 Appl. Opt. 51 5609

    [27]

    Tang H, Ou B L, Luo B, Guo H, Dang A H 2011 J. Opt. Soc. Am. A 28 1016

    [28]

    Siegman A E 1986 Lasers (Mill Valley, CA: University Science Books)

  • [1]

    Strohschei J D, Herb J J, Clarence E C 1988 Appl. Opt. 37 1045

    [2]

    Brunel M, Floch A L, Bretenaker F, Marty J, Molva E 1988 Appl. Opt. 37 2402

    [3]

    Fante R L 1985 Progress in Optics XXⅡ: Wave propagation in random media: a systems approach, Chap. VI edited by Wolf E (Elsevier, Amsterdam)

    [4]

    Anddrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham, Washington: SPIE Press)

    [5]

    Ji X L, Eyyuboglu H T, Baykal Y 2010 Opt. Express 18 6922

    [6]

    Zhang E T, Ji X L, L B D 2009 Chin. Phys. B 18 571

    [7]

    Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592

    [8]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 物理学报 56 6754]

    [9]

    Dan Y Q, Zhang B 2009 Opt. Lett. 34 563

    [10]

    Mao H D, Zhao D M 2010 Opt. Express 18 1741

    [11]

    Zhou G Q 2011 Opt. Express 19 3945

    [12]

    Li Y Q Wu Z S 2012 Chin. Phys. B 21 054203

    [13]

    Li X Q, Ji X L, Zhu J H 2013 Acta Phys. Sin. 62 044217 (in Chinese) [李晓庆, 季小玲, 朱建华 2013 物理学报 62 044217]

    [14]

    Ma Y, Ji X L Acta Phys. Sin. 62 094214 (in Chinese) [马媛, 季小玲 2013 物理学报 62 094214]

    [15]

    Kolmogorov A N 1941 C. R. Acad. Sci. URSS 30 301

    [16]

    Rao C H, Jiang W H, Ling N 2000 J. Mod. Opt. 47 1111

    [17]

    Zilberman A, Golbraikh E, Kopeika N S 2005 Proc. SPIE 5987 598702

    [18]

    Toselli I, Andrews L C, Phillips R L, Ferrero V 2007 Proc. SPIE 6551 65510E-1

    [19]

    Toselli I, Andrews L C, Phillips R L, Ferrero V 2008 Opt. Eng. 47 026003

    [20]

    Wu G H, Guo H, S. Yu S, Luo B 2010 Opt. Lett. 35 715

    [21]

    Shchepakina E and Korotkova O 2010 Opt. Express 18 10650

    [22]

    He X M, L B D 2011 Chin. Phys. B 20 094210

    [23]

    Huang Y P, Zhao G P, Xiao X, Wang F H 2012 Acta Phys. Sin. 61 144202 [黄永平, 赵光普, 肖希, 王藩侯 2012 物理学报 61 144202]

    [24]

    He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 物理学报 61 054201]

    [25]

    Deng J P, Ji X L, Lu L 2013 Acta Phys. Sin. 62 144211 (in Chinese) [邓金平, 季小玲, 陆璐 2013 物理学报 62 144211]

    [26]

    Tao R M, Si L, Ma Y X, Zhou P, Liu Z J 2012 Appl. Opt. 51 5609

    [27]

    Tang H, Ou B L, Luo B, Guo H, Dang A H 2011 J. Opt. Soc. Am. A 28 1016

    [28]

    Siegman A E 1986 Lasers (Mill Valley, CA: University Science Books)

  • [1] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [2] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输. 物理学报, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [3] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [4] 刘李辉, 吕炜煜, 杨超, 麦灿基, 陈德鹏. 部分相干双曲余弦厄米高斯光束在非Kolmogorov大气湍流中的传输特性. 物理学报, 2015, 64(3): 034208. doi: 10.7498/aps.64.034208
    [5] 谭毅, 李新阳. 光束相干合成中填充因子对远场光强分布的影响. 物理学报, 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [6] 邓金平, 季小玲, 陆璐. 多色部分相干偏心光束在non-Kolmogorov湍流中的传输. 物理学报, 2013, 62(14): 144211. doi: 10.7498/aps.62.144211
    [7] 江月松, 王帅会, 欧军, 唐华. 基于拉盖尔-高斯光束的通信系统在非Kolmogorov湍流中传输的系统容量. 物理学报, 2013, 62(21): 214201. doi: 10.7498/aps.62.214201
    [8] 程科, 钟先琼, 向安平. 相干和非相干合成光束对金属瑞利粒子的光学俘获. 物理学报, 2012, 61(7): 074202. doi: 10.7498/aps.61.074202
    [9] 何雪梅, 吕百达. 部分相干双曲正弦-Gauss涡旋光束叠加形成的合成相干涡旋在非 Kolmogorov 大气湍流中的动态演化. 物理学报, 2012, 61(5): 054201. doi: 10.7498/aps.61.054201
    [10] 周国泉. 线偏振拉盖尔-高斯光束的远场发散特性. 物理学报, 2012, 61(2): 024208. doi: 10.7498/aps.61.024208
    [11] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径. 物理学报, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [12] 季小玲. 湍流对部分相干双曲余弦高斯光束的瑞利区间的影响. 物理学报, 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [13] 崔学才, 连校许, 吕百达. 拉盖尔-高斯光束傍轴度的变化. 物理学报, 2011, 60(10): 104203. doi: 10.7498/aps.60.104203
    [14] 黎昌金, 吕百达. 非傍轴部分相干厄米-高斯光束的相干和非相干合成. 物理学报, 2009, 58(9): 6192-6201. doi: 10.7498/aps.58.6192
    [15] 季小玲, 李晓庆. 高斯-谢尔模型列阵光束的远场发散角和远场辐射强度. 物理学报, 2009, 58(7): 4624-4629. doi: 10.7498/aps.58.4624
    [16] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [17] 季小玲, 李晓庆. 湍流对离轴列阵高斯光束相干与非相干合成的影响. 物理学报, 2008, 57(12): 7674-7679. doi: 10.7498/aps.57.7674
    [18] 季小玲, 肖 希, 吕百达. 大气湍流对多色部分空间相干光传输特性的影响. 物理学报, 2004, 53(11): 3996-4001. doi: 10.7498/aps.53.3996
    [19] 范安辅, 王志伟, 孙年春. 与原子相互作用的相干光场的相位涨落和相干性的时间特性. 物理学报, 1995, 44(4): 536-544. doi: 10.7498/aps.44.536
    [20] 张家泰, 聂小波, 苏秀敏. 相干与非相干激光成丝不稳定性的数值模拟研究. 物理学报, 1994, 43(1): 52-63. doi: 10.7498/aps.43.52
计量
  • 文章访问数:  3323
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-30
  • 修回日期:  2013-09-11
  • 刊出日期:  2014-01-05

非Kolmogorov大气湍流对高斯列阵光束扩展的影响

  • 1. 四川师范大学物理学院, 成都 610066
    基金项目: 国家自然科学基金(批准号:61178070)和四川高校科研创新团队建设计划(批准号:12TD008)资助的课题.

摘要: 本文推导出了高斯列阵光束在非Kolmogorov大气湍流中传输的瑞利区间zR、湍流距离zT和远场发散角θ的解析表达式,研究了非Kolmogorov湍流的广义指数α和列阵光束的合成方式对高斯列阵光束扩展的影响. 研究表明:不论相干还是非相干合成高斯列阵光束,zR,zT和θ均随着α的增加而呈非单调变化. 当α=3.108时,zR和zT取极小值,而θ取极大值,即当α=3.108时高斯列阵光束扩展最厉害,光束扩展受湍流影响也最厉害. 非相干合成高斯列阵光束扩展比相干合成的要大,但受非Kolmogorov湍流影响却要小. 特别值得指出的是:当自由空间光束衍射较小时,有zT zR,即在瑞利区间范围内大气湍流就对光束扩展有影响;而当自由空间光束衍射较大时,有zT > zR,即在瑞利区间范围内大气湍流对光束扩展几乎没有影响.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回