搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无氨法制备GaN纳米线及其光电性能研究

赵军伟 张跃飞 宋雪梅 严辉 王如志

引用本文:
Citation:

无氨法制备GaN纳米线及其光电性能研究

赵军伟, 张跃飞, 宋雪梅, 严辉, 王如志

Preparation of GaN nanowires by nonammonia method and their photoelectronic properties

Zhao Jun-Wei, Zhang Yue-Fei, Song Xue-Mei, Yan Hui, Wang Ru-Zhi
PDF
导出引用
  • 采用等离子体增强化学气相沉积(PECVD)方法,在无氨与1050 ℃的条件下通过气液固(V-L-S)机理成功制备出六方纤锌矿结构单晶GaN纳米线其拉曼测试结果表明,所制备的纳米线存在较大的表面无序度并表现出明显的小尺寸效应样品光致发光表明其具有典型的纳米线光谱特征,另外,无氨法制备的纳米线也具有较好的场发射特性.
    Single-crystal hexagonal wurtzite GaN nanowires were successfully synthesized by using plasma-enhanced chemical vapor deposition (PECVD) via vapor-liquid-solid (V-L-S) mechanism, under the condition of non-ammonia at 1050 ℃. Raman spectra show that the as-synthesized nanowires have large disorder surface, in which there is a significantly small size effect. Furthermore, it is also observed that the prepared nanowires have typical photoluminescence characteristics and good field emission properties.
    • 基金项目: 国家自然科学基金(批准号:11274029,11074017)、北京市青年拔尖人才培育计划(批准号:CIT&TCD201204037)、北京工业大学京华人才支持计划(批准号:2014-JH-L07)、北京市科技新星计划(批准号:2080B10)和北京市属市管高等学校创新团队建设推进计划(批准号:IDHT20140506)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274029, 11074017), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions, China (Grant No. CIT&TCD201204037), the Jing-Hua Talents Project of Beijing University of Technology, China (Grant No. 2014-JH-L07), the Beijing Nova program (Grant No. 2080B10), and the Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institution, China (Grant No. IDHT20140506).
    [1]

    David Tsivion, Mark Schvartzman, Ronit Popovitz-Biro, Palle von Huth, Ernesto Joselevich 2011 Science 333 1003

    [2]

    Yongho Choi, Mario Michan, Jason L Johnson, Ali Kashefian Naieni, Ant Ural 2012 J. Appl. Phys. 111 044308

    [3]

    Avit G, Lekhal K, Andre Y, Bougerol C, Reveret F, Leymarie J, Gil E, Monier G, Castelluci D, Trassoudaine A 2014 Nano Lett. 14 559

    [4]

    Chen C C, Li Y W, Ru Z S, Xue M W, Bo Y H 2013 Acta Phys. Sin. 62 77701 (in Chinese)[陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉 2013 物理学报 62 77701]

    [5]

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X Hui 2013 Acta Phys.Sin. 62 117103 (in Chinese)[张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖 2013 物理学报 62 117103]

    [6]

    Han W Q, Fan S S, Li Q Q, Hu Y D 1997 Science 277 1287

    [7]

    Wang X H, Chang B K, Qian Y S, Gao P, Zhang Y J, Qiao J L, Du X Q 2011 Acta Phys. Sin. 60 057902 (in Chinese)[王晓晖, 常本康, 钱芸生, 高频, 张益军 2011 物理学报 60 057902]

    [8]

    Shi W S, Zhang Y F, Wang N, Lee C S, Lee S T 2001 Chem. Phys. Lett. 345 377

    [9]

    Peng H Y, Wang N, Zhou X T, Zheng Y F, Lee C S, Lee S T 2000 Chem. Phys. Lett. 327 263

    [10]

    Maoqi He, Indira Minus, Piezhen Zhou, Mohammed S N, Halpern J B 2000 Appl. Phys. Lett. 77 3731

    [11]

    Tevye Kuykendall, Peter Pauzauskie, Sangkwon Lee, Zhang Y F, Joshua Goldberger, Yan P D 2003 Nano Lett. 3 1063

    [12]

    Liu B D, Bando Y, Tang C C, Xu F F, Hu J Q, Golberg D 2005 J. Phys. Chem. B 109 17082

    [13]

    Wang Ying, Xue C S, Zhuang H Z, Wang Z P, Zhang D D, Huang Y L, Liu W J 2009 Applied Surface Science 255 7719

    [14]

    Dinh D V, Kang S M, Yang J H, Kim S W, Yoon D H 2009 J. Cryst. Growth 311 495

    [15]

    Yongho Choi, Mario Michan, Jason L Johnson, Ali Kashefian Naieni, Ant Ural 2012 J. Appl. Phys. 111 044308

    [16]

    Yang Y, Ling Y C, Wang G M, Lu X H, Tong Y X, Yat Li 2013 Nano scale 5 1820

    [17]

    Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K, Wang B B, Hui Yan 2013 Cryst. Eng. Comm. 15 1626

    [18]

    Chen C C, Yeh C C, Chen C H, Yu M Y, Liu H L, Wu J J, Chen K H, Chen L C, Peng J Y, Chen Y F 2001 J. Am. Chem. Soc. 123 2791

    [19]

    Jason L Johnson, Yongho Choi, Ant Ural 2008 J. Vac. Sci. Technol. B 26 1841

    [20]

    Wang B B, Dong G B, Xu X Z 2011 Applied Surface Science 258 1677

    [21]

    Voslker Schmidt, Ulrich Gösele 2007 Science 316 698

    [22]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [23]

    Peng H Y, Wang N, Zhou X T, Zheng Y F, Lee C S, Lee S T 2000 Chem. Phys. Lett. 327 263

    [24]

    Hannon J B, Kodambaka S, Ross F M, Tromp R M 2006 Nature 440 69

    [25]

    Li J Y, Chen X L, Cao Y G, Qiao Z Y, Lan Y C 2000 Applied Physics A Materials Science m& Processing 71 345

    [26]

    Liu H L, Chen C C, Chia C T, Yeh C C, Chen C H, Yu M Y, Keller S, Denbaars S P 2001 Chemical Physics Letters 345 245

    [27]

    Ogino T, Aoki M 1980 Jpn. J. Appl. Phys. 19 2395

    [28]

    Campbell I H, Fauchet P M 1986 Solid State Communications 58 739

    [29]

    Chang K W, Wu J J 2002 J. Phys. Chem. B 106 7796

    [30]

    Ghulam Nabi, Chuanbao Cao, Sajad Hussain, Waheed S Khan, Sagar R R, Zulfiqar Ali, Butt F K, Zahid Usman, Dapeng Yu 2012 Cryst. Eng. Comm. 14 8492

    [31]

    Lyu S C, Cha O H, Suh E K, Ruh H, Lee H J, Lee C J 2003 Chemical Physics Letters 367 136

    [32]

    Chin A H, Ahn T S, Li H W, Vaddiraju S, Bardeen C J, Ning C Z, Sunkara M K 2007 Nano Letters 7 626

    [33]

    Ng D K T, Hong M H, Tan L S, Zhu Y W, Sow C H 2007 Nanotechnology 18 375707

    [34]

    Gan H Y, Liu H B, Li Y J, Zhao Q, Li Y L, Wang S, Jiu T G, Wang N, He X R, Yu D P, Zhu D B 2005 J. Am. Chem. Soc. 127 12452

    [35]

    Dang C, Wang B B, Wang F Y 2009 Vacuum 83 1414

  • [1]

    David Tsivion, Mark Schvartzman, Ronit Popovitz-Biro, Palle von Huth, Ernesto Joselevich 2011 Science 333 1003

    [2]

    Yongho Choi, Mario Michan, Jason L Johnson, Ali Kashefian Naieni, Ant Ural 2012 J. Appl. Phys. 111 044308

    [3]

    Avit G, Lekhal K, Andre Y, Bougerol C, Reveret F, Leymarie J, Gil E, Monier G, Castelluci D, Trassoudaine A 2014 Nano Lett. 14 559

    [4]

    Chen C C, Li Y W, Ru Z S, Xue M W, Bo Y H 2013 Acta Phys. Sin. 62 77701 (in Chinese)[陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉 2013 物理学报 62 77701]

    [5]

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X Hui 2013 Acta Phys.Sin. 62 117103 (in Chinese)[张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖 2013 物理学报 62 117103]

    [6]

    Han W Q, Fan S S, Li Q Q, Hu Y D 1997 Science 277 1287

    [7]

    Wang X H, Chang B K, Qian Y S, Gao P, Zhang Y J, Qiao J L, Du X Q 2011 Acta Phys. Sin. 60 057902 (in Chinese)[王晓晖, 常本康, 钱芸生, 高频, 张益军 2011 物理学报 60 057902]

    [8]

    Shi W S, Zhang Y F, Wang N, Lee C S, Lee S T 2001 Chem. Phys. Lett. 345 377

    [9]

    Peng H Y, Wang N, Zhou X T, Zheng Y F, Lee C S, Lee S T 2000 Chem. Phys. Lett. 327 263

    [10]

    Maoqi He, Indira Minus, Piezhen Zhou, Mohammed S N, Halpern J B 2000 Appl. Phys. Lett. 77 3731

    [11]

    Tevye Kuykendall, Peter Pauzauskie, Sangkwon Lee, Zhang Y F, Joshua Goldberger, Yan P D 2003 Nano Lett. 3 1063

    [12]

    Liu B D, Bando Y, Tang C C, Xu F F, Hu J Q, Golberg D 2005 J. Phys. Chem. B 109 17082

    [13]

    Wang Ying, Xue C S, Zhuang H Z, Wang Z P, Zhang D D, Huang Y L, Liu W J 2009 Applied Surface Science 255 7719

    [14]

    Dinh D V, Kang S M, Yang J H, Kim S W, Yoon D H 2009 J. Cryst. Growth 311 495

    [15]

    Yongho Choi, Mario Michan, Jason L Johnson, Ali Kashefian Naieni, Ant Ural 2012 J. Appl. Phys. 111 044308

    [16]

    Yang Y, Ling Y C, Wang G M, Lu X H, Tong Y X, Yat Li 2013 Nano scale 5 1820

    [17]

    Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K, Wang B B, Hui Yan 2013 Cryst. Eng. Comm. 15 1626

    [18]

    Chen C C, Yeh C C, Chen C H, Yu M Y, Liu H L, Wu J J, Chen K H, Chen L C, Peng J Y, Chen Y F 2001 J. Am. Chem. Soc. 123 2791

    [19]

    Jason L Johnson, Yongho Choi, Ant Ural 2008 J. Vac. Sci. Technol. B 26 1841

    [20]

    Wang B B, Dong G B, Xu X Z 2011 Applied Surface Science 258 1677

    [21]

    Voslker Schmidt, Ulrich Gösele 2007 Science 316 698

    [22]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [23]

    Peng H Y, Wang N, Zhou X T, Zheng Y F, Lee C S, Lee S T 2000 Chem. Phys. Lett. 327 263

    [24]

    Hannon J B, Kodambaka S, Ross F M, Tromp R M 2006 Nature 440 69

    [25]

    Li J Y, Chen X L, Cao Y G, Qiao Z Y, Lan Y C 2000 Applied Physics A Materials Science m& Processing 71 345

    [26]

    Liu H L, Chen C C, Chia C T, Yeh C C, Chen C H, Yu M Y, Keller S, Denbaars S P 2001 Chemical Physics Letters 345 245

    [27]

    Ogino T, Aoki M 1980 Jpn. J. Appl. Phys. 19 2395

    [28]

    Campbell I H, Fauchet P M 1986 Solid State Communications 58 739

    [29]

    Chang K W, Wu J J 2002 J. Phys. Chem. B 106 7796

    [30]

    Ghulam Nabi, Chuanbao Cao, Sajad Hussain, Waheed S Khan, Sagar R R, Zulfiqar Ali, Butt F K, Zahid Usman, Dapeng Yu 2012 Cryst. Eng. Comm. 14 8492

    [31]

    Lyu S C, Cha O H, Suh E K, Ruh H, Lee H J, Lee C J 2003 Chemical Physics Letters 367 136

    [32]

    Chin A H, Ahn T S, Li H W, Vaddiraju S, Bardeen C J, Ning C Z, Sunkara M K 2007 Nano Letters 7 626

    [33]

    Ng D K T, Hong M H, Tan L S, Zhu Y W, Sow C H 2007 Nanotechnology 18 375707

    [34]

    Gan H Y, Liu H B, Li Y J, Zhao Q, Li Y L, Wang S, Jiu T G, Wang N, He X R, Yu D P, Zhu D B 2005 J. Am. Chem. Soc. 127 12452

    [35]

    Dang C, Wang B B, Wang F Y 2009 Vacuum 83 1414

  • [1] 杨孟骐, 姬宇航, 梁琦, 王长昊, 张跃飞, 张铭, 王波, 王如志. 四方结构GaN纳米线制备、掺杂调控及其场发射性能研究. 物理学报, 2020, 69(16): 167805. doi: 10.7498/aps.69.20200445
    [2] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能. 物理学报, 2020, 69(8): 087801. doi: 10.7498/aps.69.20191923
    [3] 叶芸, 陈填源, 郭太良, 蒋亚东. 磁场辅助热处理金属化碳纳米管场发射性能. 物理学报, 2014, 63(8): 086802. doi: 10.7498/aps.63.086802
    [4] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [5] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [6] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [7] 王马华, 朱汉青, 朱光平. 水热法制备注射器样纳米氧化锌场发射特性的研究. 物理学报, 2011, 60(7): 077305. doi: 10.7498/aps.60.077305
    [8] 吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋. 新型氧化铝模板自组装制备非晶碳纳米点阵列膜及其场发射性能研究. 物理学报, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [9] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [10] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [11] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [12] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [13] 罗 敏, 王新庆, 葛洪良, 王 淼, 徐亚伯, 陈 强, 李利培, 陈 磊, 管高飞, 夏 娟, 江 丰. 排列形状及阵列数目对纳米导线阵列场发射性能的影响. 物理学报, 2006, 55(11): 6061-6067. doi: 10.7498/aps.55.6061
    [14] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究. 物理学报, 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [15] 李 强, 梁二军. 碳、碳氮和硼碳氮纳米管场发射性能的比较研究. 物理学报, 2005, 54(12): 5931-5936. doi: 10.7498/aps.54.5931
    [16] 王新庆, 王 淼, 李振华, 杨 兵, 王凤飞, 何丕模, 徐亚伯. 单根纳米导线场发射增强因子的计算. 物理学报, 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [17] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [18] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究. 物理学报, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [19] 张兆祥, 张耿民, 侯士敏, 张 浩, 顾镇南, 刘惟敏, 赵兴钰, 薛增泉. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [20] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
计量
  • 文章访问数:  4751
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-14
  • 修回日期:  2014-02-25
  • 刊出日期:  2014-06-05

/

返回文章
返回