搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快前沿电流产生气化铝单丝Z箍缩负载的研究

吴坚 李兴文 李阳 杨泽锋 史宗谦 贾申利 邱爱慈

引用本文:
Citation:

快前沿电流产生气化铝单丝Z箍缩负载的研究

吴坚, 李兴文, 李阳, 杨泽锋, 史宗谦, 贾申利, 邱爱慈

Gasified singlewire almunum Z-pinch load formed by fast rising current

Wu Jian, Li Xing-Wen, Li Yang, Yang Ze-Feng, Shi Zong-Qian, Jia Shen-Li, Qiu Ai-Ci
PDF
导出引用
  • 为了抑制丝阵Z箍缩单丝电爆炸过程产生的核冕结构,分析了激光探针诊断的物理内涵,并基于约30 ps激光探针研究了负极性快前沿脉冲(90–170 A/ns)下铝丝的电爆炸特性. 直径15 μm,长2 cm的铝丝,阻性电压峰值为35–50 kV,电压击穿前金属丝电阻率增加至30–40 μΩ·cm. 电压峰值时刻沉积能量为1.5–2.5 eV/atom,欧姆加热功率下降至峰值一半时的沉积能量为2.5–4.0 eV/atom,接近铝丝从室温加热至完全气化所需的能量约4.0 eV/atom. 快前沿脉冲可增加金属中的欧姆能量沉积速度,提高负载击穿电压. 激光纹影图像可以观察到气体通道和等离子体通道,得到冕等离子体的平均电离度约为0.3. 由于极性效应,电极附近区域的能量沉积超过负载中部区域,电极附近负载基本完全气化,而负载中部区域仍存在液态或团簇状颗粒. 一些发次中,实现了轴向均匀且完全气化的铝蒸气,在电压击穿后的约127 ns,70%的初始质量分布在直径1 mm的区域内,100%的初始质量分布在直径2 mm 的区域内.
    In order to suppress the core-corona structures commonly observed in the single-wire exploding stage of wire array Z-pinch, the laser probe diagnostic is analyzed, and the exploding characteristics of aluminum wire under negative-polarity and fast-rising current pulses (90-170 A/ns) are investigated using a picosecond laser probe. The aluminum wire with a diameter of 15 μ m and a length of 2 cm, has a peak resistive voltage of 35-50 kV and a resistivity of 30-40 μΩ·cm before the voltage collapsed. The ohmic energy deposited in the load is 1.5-2.5 eV/atom at the voltage peak time, and 2.5-4.0 eV/atom at the time when the Joule heating power drops off to half of its maximum value. A faster rising current would lead to an increase of the energy deposition rate, and enhance the breakdown voltage. In most shots, nearly all the aluminum atoms near the electrodes are in the gaseous state, and liquid drops or clusters existing at the central part of the wire. While in some shots, the load is exploded into a gaseous state homogeneously along the axis. At about 127 ns after the laser peak, 70% of the initial mass is located within a diameter of 1 mm, and all the mass is within a diameter of 2 mm.
    • 基金项目: 国家自然科学基金(批准号:51237006,51322706)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51237006, 51322706).
    [1]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [2]

    Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, L M 2006 Acta Phys. Sin. 55 5917 (in Chinese) [邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕敏 2006 物理学报 55 5917]

    [3]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seaman J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T, Peterson D L 1998 Phys. Plasmas 5 2105

    [4]

    Harvey-Thompson A J, Lebedev S V, Burdiak G, Waisman E M, Hall G N, Suzuki-Vidal F, Bland S N, Chittenden J P, Grouchy P De, Khoory E, Pickworth L, Skidmore J, Swadling G 2011 Phys. Rev. Lett. 106 205002

    [5]

    Sinars D B, Hu M, Chandler K M, Shelkovenko T A, Pikuz S A, Greenly J B, Hammer D A, Kusse B R 2001 Phys. Plasmas 8 216

    [6]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

    [7]

    Tkachenko S I, Barishpoltsev D V, Ivanenkov G V, Romanova V M, Ter-Oganesyan A E, Mingaleev A R, Shelkovenko T A, Pikuz S A 2007 Phys. Plasmas 14 123502

    [8]

    Sarkisov G S, Rosenthal S E, Struve K W, McDaniel D H 2005 Phys. Rev. Lett. 94 046404

    [9]

    Sarkisov G S, Rosenthal S E, Struve K W, 2008 Phys. Rev. E 77 056406

    [10]

    Zhao J P, Zhang Q G, Yan W Y, Liu X D, Liu L C, Zhou Q, Qiu A C 2013 IEEE Trans. Plasmas Sci. 40 2207

    [11]

    Zhao T, Zou X B, Zhang R, Wang X X 2010 Chin. Phys. B 19 075205

    [12]

    Wu J, Wang L P, Han J J, Li M, Sheng L, Li Y, Zhang M, Guo N, Lei T S, Qiu A C, L M 2012 Phys. Plasmas 19 022702

    [13]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2012 Europhys. Lett. 97 35004

    [14]

    Wang Z, Yang J L, Xu R K, Li L B, Xu Z P, Zhang F Q, Zhong Y H 2006 Acta Phys. Sin. 55 5942 (in Chinese) [王真, 杨建伦, 徐荣昆, 李林波, 许泽平, 章法强, 钟耀华 2006 物理学报 55 5942]

    [15]

    Chen F X, Feng J H, Li L B, Yang J L, Zhou L, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 045204 (in Chinese) [陈法新, 冯璟华, 李林波, 杨建伦, 周林, 徐荣昆, 许泽平 2013 物理学报 62 045204]

    [16]

    Chen G H, Guo J J, Huang X B, Liu J, Zhang C H, Wang G L, Zhou S T, Yang Q G 2013 High Power Laser Particle Beams 25 9 (in Chinese) [陈光华, 郭江建, 黄显宾, 刘俊, 张朝辉, 王贵林, 周少彤, 阳庆国 2013 强激光与粒子束 25 9]

    [17]

    Sarkisov G S, Beigman I L, Shevelko V P, Struve K W 2006 Phys. Rev. A 73 042501

    [18]

    Hipp M, Woisetschlaeger J, Reiterer P, Neger T 2004 Measurement 36 53

    [19]

    Chase M W 1998 NIST-JANAF Thermochemical Tables (4th Ed.) (Maryland: NIST Gaithersburg)

    [20]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H, Gribov A N, Oleinik G M 2002 Phys. Rev. E 66 046413

  • [1]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [2]

    Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, L M 2006 Acta Phys. Sin. 55 5917 (in Chinese) [邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕敏 2006 物理学报 55 5917]

    [3]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seaman J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T, Peterson D L 1998 Phys. Plasmas 5 2105

    [4]

    Harvey-Thompson A J, Lebedev S V, Burdiak G, Waisman E M, Hall G N, Suzuki-Vidal F, Bland S N, Chittenden J P, Grouchy P De, Khoory E, Pickworth L, Skidmore J, Swadling G 2011 Phys. Rev. Lett. 106 205002

    [5]

    Sinars D B, Hu M, Chandler K M, Shelkovenko T A, Pikuz S A, Greenly J B, Hammer D A, Kusse B R 2001 Phys. Plasmas 8 216

    [6]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

    [7]

    Tkachenko S I, Barishpoltsev D V, Ivanenkov G V, Romanova V M, Ter-Oganesyan A E, Mingaleev A R, Shelkovenko T A, Pikuz S A 2007 Phys. Plasmas 14 123502

    [8]

    Sarkisov G S, Rosenthal S E, Struve K W, McDaniel D H 2005 Phys. Rev. Lett. 94 046404

    [9]

    Sarkisov G S, Rosenthal S E, Struve K W, 2008 Phys. Rev. E 77 056406

    [10]

    Zhao J P, Zhang Q G, Yan W Y, Liu X D, Liu L C, Zhou Q, Qiu A C 2013 IEEE Trans. Plasmas Sci. 40 2207

    [11]

    Zhao T, Zou X B, Zhang R, Wang X X 2010 Chin. Phys. B 19 075205

    [12]

    Wu J, Wang L P, Han J J, Li M, Sheng L, Li Y, Zhang M, Guo N, Lei T S, Qiu A C, L M 2012 Phys. Plasmas 19 022702

    [13]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2012 Europhys. Lett. 97 35004

    [14]

    Wang Z, Yang J L, Xu R K, Li L B, Xu Z P, Zhang F Q, Zhong Y H 2006 Acta Phys. Sin. 55 5942 (in Chinese) [王真, 杨建伦, 徐荣昆, 李林波, 许泽平, 章法强, 钟耀华 2006 物理学报 55 5942]

    [15]

    Chen F X, Feng J H, Li L B, Yang J L, Zhou L, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 045204 (in Chinese) [陈法新, 冯璟华, 李林波, 杨建伦, 周林, 徐荣昆, 许泽平 2013 物理学报 62 045204]

    [16]

    Chen G H, Guo J J, Huang X B, Liu J, Zhang C H, Wang G L, Zhou S T, Yang Q G 2013 High Power Laser Particle Beams 25 9 (in Chinese) [陈光华, 郭江建, 黄显宾, 刘俊, 张朝辉, 王贵林, 周少彤, 阳庆国 2013 强激光与粒子束 25 9]

    [17]

    Sarkisov G S, Beigman I L, Shevelko V P, Struve K W 2006 Phys. Rev. A 73 042501

    [18]

    Hipp M, Woisetschlaeger J, Reiterer P, Neger T 2004 Measurement 36 53

    [19]

    Chase M W 1998 NIST-JANAF Thermochemical Tables (4th Ed.) (Maryland: NIST Gaithersburg)

    [20]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H, Gribov A N, Oleinik G M 2002 Phys. Rev. E 66 046413

  • [1] 田国, 樊贞, 陈德杨, 侯志鹏, 刘俊明, 高兴森. “针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性. 物理学报, 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [2] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道. 物理学报, 2022, 71(3): 035205. doi: 10.7498/aps.71.20211495
    [3] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211495
    [4] 刘永棠, 盛亮, 李阳, 张金海, 孟伦, 李豪卿, 袁媛, 孙铁平, 欧阳晓平. 周期调制结构平面薄膜电爆炸实验研究. 物理学报, 2021, 70(6): 065203. doi: 10.7498/aps.70.20201574
    [5] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度. 物理学报, 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [6] 李琛, 韩若愚, 刘毅, 张晨阳, 欧阳吉庭, 丁卫东. 空气中单丝和丝阵电爆炸特性的比较. 物理学报, 2020, 69(7): 075203. doi: 10.7498/aps.69.20191797
    [7] 王坤, 史宗谦, 石元杰, 赵志刚, 张董. 真空及空气中金属丝电爆炸特性研究. 物理学报, 2017, 66(18): 185203. doi: 10.7498/aps.66.185203
    [8] 王坤, 史宗谦, 石元杰, 白骏, 李阳, 武子骞, 邱爱慈, 贾申利. 真空中铝单丝电爆炸的实验研究. 物理学报, 2016, 65(1): 015203. doi: 10.7498/aps.65.015203
    [9] 彭楚才, 王金相, 刘林林. 介质环境对铜丝电爆炸制备纳米粉体的影响. 物理学报, 2015, 64(7): 075203. doi: 10.7498/aps.64.075203
    [10] 刘桂媛, 宋洪胜, 张宁玉, 程传福. 飞秒激光在锥形镀膜探针传输中相位奇异的研究. 物理学报, 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [11] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体. 物理学报, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [12] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜. 双绞铝丝纳秒电爆炸实验研究. 物理学报, 2014, 63(20): 205203. doi: 10.7498/aps.63.205203
    [13] 石桓通, 邹晓兵, 赵屾, 朱鑫磊, 王新新. 并联金属丝提高电爆炸丝沉积能量的数值模拟. 物理学报, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [14] 毕学松, 朱亮, 杨富龙. 丝电爆过程的电流导入机理. 物理学报, 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [15] 刘建业, 郭文军. 核物质状态方程中动量相关作用可能的探针. 物理学报, 2010, 59(10): 6933-6939. doi: 10.7498/aps.59.6933
    [16] 刘桂媛, 滕树云, 程传福, 宋洪胜, 刘曼. 锥形镀膜光纤探针中飞秒激光脉冲的传输. 物理学报, 2009, 58(11): 7613-7620. doi: 10.7498/aps.58.7613
    [17] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [18] 王 真, 杨建伦, 徐荣昆, 李林波, 许泽平, 章法强, 钟耀华. 用于Z-pinch诊断的266nm激光探针分幅阴影成像系统. 物理学报, 2006, 55(11): 5942-5946. doi: 10.7498/aps.55.5942
    [19] 姚若河, 池凌飞, 林璇英, 石旺舟, 林揆训. 射频辉光放电等离子体的电探针诊断及数据处理. 物理学报, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
    [20] 江志明, 徐至展, 陈时胜, 林礼煌, 张伟清, 钱爱娣. 利用多分幅光学探针诊断系统研究激光等离子体. 物理学报, 1988, 37(10): 1658-1663. doi: 10.7498/aps.37.1658
计量
  • 文章访问数:  6277
  • PDF下载量:  565
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-02-16
  • 刊出日期:  2014-06-05

/

返回文章
返回