搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潮湿空气对碘化铯薄膜结构和性质的影响

樊龙 杨志文 陈韬 李晋 黎宇坤 曹柱荣

引用本文:
Citation:

潮湿空气对碘化铯薄膜结构和性质的影响

樊龙, 杨志文, 陈韬, 李晋, 黎宇坤, 曹柱荣

Influence of air exposure on the structure and properties of cesium iodide film

Fan Long, Yang Zhi-Wen, Chen Tao, Li Jin, Li Yu-Kun, Cao Zhu-Rong
PDF
导出引用
  • 采用热蒸发法在普通载玻片上制备了碘化铯(CsI)多晶薄膜,采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、高阻仪、红外分光光度计研究了暴露于潮湿空气对CsI薄膜结构、电阻率及红外透过率的影响. SEM结果表明,薄膜中颗粒平均尺寸由0.36 μm变为1.25 μm. 吸附水沿颗粒间界扩散,间界发生弯曲和移动,大颗粒吸收小颗粒质量长大. XRD分析表明,(110)晶面衍射峰强度增加,峰位向高角度移动,半高宽减少,薄膜张应力减小,趋于形成(110/220)织构,晶粒平均尺寸为25.6,28.4,45.1 nm. 受潮后薄膜电阻率由1010 Ω·cm量级减少为108 Ω· cm量级. 在3675–3750 cm-1和3560–3640 cm-1位置出现接近游离水而非液态水的红外吸收峰,观察到吸收峰的精细结构,峰分裂源于受离子偶极键影响的羟基与吸附水气液界面处悬键的伸缩振动.
    Polycrystalline cesium iodide (CsI) thin films were prepared on glass substrates by thermal evaporation. The Influences of air exposure on the structure, resistivity and infrared transmittance of CsI film were investigated by scanning electron microscopy, X-ray diffraction (XRD), high resistance meter and infrared spectrophotometer (IR). It is found that the coalescence of grains occurs and the average grain size increases from 0.36 μm to 1.25 μm. The mechanism of grain growth is attributed to the diffusion of water molecules along grain boundaries and the migration of grain boundaries driven by minimization of total free energy. XRD results indicate the formation of (110/220) texture when exposed to ambient air and the relaxation of tensile stress during recrystallization. The average crystallite sizes obtained from Debye-Scherrer's formula are 25.6 nm, 28.4 nm and 45.1 nm respectively. The resistivity of the film decreases from the order of 1010 Ω·cm to 108 Ω· cm. The IR absorption bands in the ranges of 3675-3750 cm-1 and 3560-3640 cm-1 closely resemble that of free water rather than liquid water. The observed split bands are assigned to the non-hydrogen-bonded OH associated with ion-dipole bonds and dangling OH at air-water interface respectively.
    • 基金项目: 国家自然科学基金(批准号:10905050)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10905050).
    [1]

    Breskin A 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 371 116

    [2]

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209 (in Chinese) [曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209]

    [3]

    Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011 Acta Phys. Sin. 60 029701 (in Chinese) [胡慧君, 赵宝升, 盛立志, 鄢秋荣 2011 物理学报 60 029701]

    [4]

    Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang Q H 2007 Acta Phys. Sin. 56 1447 (in Chinese) [胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447]

    [5]

    Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894 (in Chinese) [李敏, 尼启良, 陈波 2009 物理学报 58 6894]

    [6]

    Molnar L 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 595 27

    [7]

    Halvorson C, Houck T, Macphee A, Opachich Y P, Lahowe D, Copsey B 2010 Rev. Sci. Instrum. 81 10E309

    [8]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102

    [9]

    Xie Y G, Zhang A W, Liu Y B, Liu H B, Hu T, Zhou L, Cai X, Fang J, Yu B X, Ge Y S, L Q W, Sun X L, Sun L J, Xue Z, Xie Y G, Zheng Y H, L J G 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 689 79

    [10]

    Nitti M A, Cioffi N, Nappi E, Singh B K, Valentini A 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 493 16

    [11]

    Triloki, Dutta B, Singh B K 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 695 279

    [12]

    Nitti M A, Senesi G S, Liotino A, Nappi E, Valentini A, Singh B K 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 523 323

    [13]

    Hoedlmoser H, Braem A, de Cataldo G, Davenport M, Di Mauro A, Franco A, Gallas A, Martinengo P, Nappi E, Piuz F, Schyns E 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 574 28

    [14]

    Razin V I, Gotovcev Y N, Kurepin A B, Reshetin A I 1998 Nucl. Instrum. Methods Phys. Res. Sect. A 419 621

    [15]

    Boutboul T, Breskin A, Chechik R, Klein E, Braem A, Lion G, Miné P 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 438 409

    [16]

    Nitti M A, Nappi E, Valentini A, Bénédic F, Bruno P, Cicala G 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 553 157

    [17]

    Almeida J, Braem A, Breskin A, Buzulutskov A, Chechik R, Cohen S, Coluzza C, Conforto E, Margaritondo G, Nappi E, Paic G, Piuz F, Dell'Orto T, Scognetti T, Sgobba S, Tonner B P 1995 Nucl. Instrum. Methods Phys. Res. Sect. A 367 337

    [18]

    Singh B K, Nitti M A, Valentini A, Nappi E, Coluzza C, Di Santo G, Zanoni R 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 581 651

    [19]

    Xie X W, Guo M l 1999 Fundamentals of Materials Science (Beijing: Beihang University Press) p134 (in Chinese) [谢希文, 过梅丽 1999 材料科学基础 (北京: 北京航空航天大学出版社) 第134页]

    [20]

    Hui Z Z, Wang E X, Wan L X 1993 Physics of Surfaces and Interfaces (Chengdu: University of Electronic Science and Technology of China Press) p66 (in Chinese) [恽正中, 王恩信, 完利祥 1993 表面与界面物理 (成都: 电子科技大学出版社) 第66页]

    [21]

    Cui G W 1990 Defect, Diffsion and Sintering (Beijing: Tsinghua University Press) p156 (in Chinese) [崔国文 1990 缺陷, 扩散与烧结 (北京: 清华大学出版社) 第156页]

    [22]

    Lu B, Laughlin D E 2001 The Physics of Ultrahigh-Density Magnetic Recording Chapter 2: Microstructure of Longitudinal Media (Berlin: Springer-Verlag) p12

    [23]

    Zhang L D, Mu J M 2001 Nanomaterials and Nanostucture (Beijing: Sicence Press) p148 (in Chinese) [张立德 牟季美 2001 纳米材料和纳米结构 (北京: 科学出版社) 第148页]

    [24]

    Klug H P, Alexander L E 1974 X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (New York: John Wiley & Sons) p662, 656

    [25]

    Garg P, Rai R, Singh B K 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 736 128

    [26]

    Nix W D, Clemens B M 1999 J. Mater. Res. 14 3467

    [27]

    Foster M C, Ewing G E 2000 J. Chem. Phys. 112 6817

    [28]

    Smart R S C, Sheppard N 1976 J. Chem. Soc. Faraday Trans. 2: Molecular and Chhemical Physics 72 707

    [29]

    Peters S J, Ewing G E 1997 J. Phys. Chem. B 101 10880

  • [1]

    Breskin A 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 371 116

    [2]

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209 (in Chinese) [曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209]

    [3]

    Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011 Acta Phys. Sin. 60 029701 (in Chinese) [胡慧君, 赵宝升, 盛立志, 鄢秋荣 2011 物理学报 60 029701]

    [4]

    Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang Q H 2007 Acta Phys. Sin. 56 1447 (in Chinese) [胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447]

    [5]

    Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894 (in Chinese) [李敏, 尼启良, 陈波 2009 物理学报 58 6894]

    [6]

    Molnar L 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 595 27

    [7]

    Halvorson C, Houck T, Macphee A, Opachich Y P, Lahowe D, Copsey B 2010 Rev. Sci. Instrum. 81 10E309

    [8]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102

    [9]

    Xie Y G, Zhang A W, Liu Y B, Liu H B, Hu T, Zhou L, Cai X, Fang J, Yu B X, Ge Y S, L Q W, Sun X L, Sun L J, Xue Z, Xie Y G, Zheng Y H, L J G 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 689 79

    [10]

    Nitti M A, Cioffi N, Nappi E, Singh B K, Valentini A 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 493 16

    [11]

    Triloki, Dutta B, Singh B K 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 695 279

    [12]

    Nitti M A, Senesi G S, Liotino A, Nappi E, Valentini A, Singh B K 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 523 323

    [13]

    Hoedlmoser H, Braem A, de Cataldo G, Davenport M, Di Mauro A, Franco A, Gallas A, Martinengo P, Nappi E, Piuz F, Schyns E 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 574 28

    [14]

    Razin V I, Gotovcev Y N, Kurepin A B, Reshetin A I 1998 Nucl. Instrum. Methods Phys. Res. Sect. A 419 621

    [15]

    Boutboul T, Breskin A, Chechik R, Klein E, Braem A, Lion G, Miné P 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 438 409

    [16]

    Nitti M A, Nappi E, Valentini A, Bénédic F, Bruno P, Cicala G 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 553 157

    [17]

    Almeida J, Braem A, Breskin A, Buzulutskov A, Chechik R, Cohen S, Coluzza C, Conforto E, Margaritondo G, Nappi E, Paic G, Piuz F, Dell'Orto T, Scognetti T, Sgobba S, Tonner B P 1995 Nucl. Instrum. Methods Phys. Res. Sect. A 367 337

    [18]

    Singh B K, Nitti M A, Valentini A, Nappi E, Coluzza C, Di Santo G, Zanoni R 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 581 651

    [19]

    Xie X W, Guo M l 1999 Fundamentals of Materials Science (Beijing: Beihang University Press) p134 (in Chinese) [谢希文, 过梅丽 1999 材料科学基础 (北京: 北京航空航天大学出版社) 第134页]

    [20]

    Hui Z Z, Wang E X, Wan L X 1993 Physics of Surfaces and Interfaces (Chengdu: University of Electronic Science and Technology of China Press) p66 (in Chinese) [恽正中, 王恩信, 完利祥 1993 表面与界面物理 (成都: 电子科技大学出版社) 第66页]

    [21]

    Cui G W 1990 Defect, Diffsion and Sintering (Beijing: Tsinghua University Press) p156 (in Chinese) [崔国文 1990 缺陷, 扩散与烧结 (北京: 清华大学出版社) 第156页]

    [22]

    Lu B, Laughlin D E 2001 The Physics of Ultrahigh-Density Magnetic Recording Chapter 2: Microstructure of Longitudinal Media (Berlin: Springer-Verlag) p12

    [23]

    Zhang L D, Mu J M 2001 Nanomaterials and Nanostucture (Beijing: Sicence Press) p148 (in Chinese) [张立德 牟季美 2001 纳米材料和纳米结构 (北京: 科学出版社) 第148页]

    [24]

    Klug H P, Alexander L E 1974 X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (New York: John Wiley & Sons) p662, 656

    [25]

    Garg P, Rai R, Singh B K 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 736 128

    [26]

    Nix W D, Clemens B M 1999 J. Mater. Res. 14 3467

    [27]

    Foster M C, Ewing G E 2000 J. Chem. Phys. 112 6817

    [28]

    Smart R S C, Sheppard N 1976 J. Chem. Soc. Faraday Trans. 2: Molecular and Chhemical Physics 72 707

    [29]

    Peters S J, Ewing G E 1997 J. Phys. Chem. B 101 10880

  • [1] 张鲁山, 于洪飞, 郭永权. FeTe合金结构分析及其薄膜制备. 物理学报, 2012, 61(1): 016101. doi: 10.7498/aps.61.016101
    [2] 岂云开, 顾建军, 刘力虎, 张海峰, 徐芹, 孙会元. Al/ZnO/Al薄膜的结构与磁性分析. 物理学报, 2011, 60(5): 057502. doi: 10.7498/aps.60.057502
    [3] 陈帝伊, 申滔, 马孝义. 参数不定的旋转圆盘在有界扰动下混沌振动的滑模变结构控制. 物理学报, 2011, 60(5): 050505. doi: 10.7498/aps.60.050505
    [4] 濮春英, 刘廷禹, 刘长捷, 白晓明, 李春萍, 佘辉. 碘化铯晶体中电子型色心的电子结构研究. 物理学报, 2010, 59(1): 453-457. doi: 10.7498/aps.59.453
    [5] 陈城钊, 李平, 林璇英, 刘翠青, 邱胜桦, 吴燕丹, 余楚迎. 纳米晶硅薄膜中氢含量及键合模式的红外分析. 物理学报, 2009, 58(4): 2565-2571. doi: 10.7498/aps.58.2565
    [6] 徐跟建, 谭伟石, 曹辉, 邓开明, 吴小山. 非化学计量配比La0.67Sr0.33-x□xMnO3的结构和输运性质的研究. 物理学报, 2009, 58(1): 378-383. doi: 10.7498/aps.58.378
    [7] 汪 华, 刘世林, 刘 杰, 王凤燕, 姜 波, 杨学明. N2O+离子A2Σ+电子态高振动能级的转动结构分析. 物理学报, 2008, 57(2): 796-802. doi: 10.7498/aps.57.796
    [8] 苏伟涛, 李 斌, 刘定权, 张凤山. 氟化铒薄膜晶体结构与红外光学性能的关系. 物理学报, 2007, 56(5): 2541-2546. doi: 10.7498/aps.56.2541
    [9] 李玉红, 贺德衍, 张 宇, 李振生. 蒸发条件对碘化铅多晶薄膜结构的影响. 物理学报, 2007, 56(10): 6028-6032. doi: 10.7498/aps.56.6028
    [10] 王婷婷, 叶 超, 宁兆元, 程珊华. SiCOH低介电常数薄膜的性质和键结构分析. 物理学报, 2005, 54(2): 892-896. doi: 10.7498/aps.54.892
    [11] 张晨辉, 雒建斌, 李文治, 陈大融. TiN和Ti1-xSixNy薄膜的微观结构分析. 物理学报, 2004, 53(1): 182-188. doi: 10.7498/aps.53.182
    [12] 江美福, 宁兆元. 氟化类金刚石薄膜的拉曼和红外光谱结构研究. 物理学报, 2004, 53(5): 1588-1593. doi: 10.7498/aps.53.1588
    [13] 罗 志, 林璇英, 林舜辉, 余楚迎, 林揆训, 余云鹏, 谭伟锋. 氢化非晶硅薄膜中氢含量及键合模式的红外分析. 物理学报, 2003, 52(1): 169-174. doi: 10.7498/aps.52.169
    [14] 辛煜, 宁兆元, 甘肇强, 陆新华, 方亮, 程珊华. 不同CHF3/CH4流量比下沉积a-C∶F∶H薄膜键结构的红外分析. 物理学报, 2001, 50(12): 2492-2496. doi: 10.7498/aps.50.2492
    [15] 康晋锋, 陈新, 王佑祥, 韩汝琦, 熊光成, 连贵君, 李杰, 吴思诚. 正常态金属与氧化物高温超导薄膜界面扩散特性分析. 物理学报, 1995, 44(11): 1831-1838. doi: 10.7498/aps.44.1831
    [16] 吴全德, 李建平, 董引吾. 氧化铯薄膜的光学特性和介电常数. 物理学报, 1987, 36(1): 101-107. doi: 10.7498/aps.36.101
    [17] 李建平, 刘惟敏, 吴全德. 银-氧化铯薄膜中银量对光学特性的影响. 物理学报, 1987, 36(2): 264-269. doi: 10.7498/aps.36.264
    [18] 徐积仁, 黄南堂, 蒋义枫, 傅广生, 吴振球. BCl3振动激发弛豫的红外吸收研究. 物理学报, 1981, 30(11): 1456-1463. doi: 10.7498/aps.30.1456
    [19] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
    [20] 张沛霖, 林树智. 晶粒间界对于铝晶体中形成亚结构的影响. 物理学报, 1956, 12(2): 170-173. doi: 10.7498/aps.12.170
计量
  • 文章访问数:  5991
  • PDF下载量:  971
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-22
  • 修回日期:  2014-04-03
  • 刊出日期:  2014-07-05

/

返回文章
返回