-
采用热蒸发法在普通载玻片上制备了碘化铯(CsI)多晶薄膜,采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、高阻仪、红外分光光度计研究了暴露于潮湿空气对CsI薄膜结构、电阻率及红外透过率的影响. SEM结果表明,薄膜中颗粒平均尺寸由0.36 μm变为1.25 μm. 吸附水沿颗粒间界扩散,间界发生弯曲和移动,大颗粒吸收小颗粒质量长大. XRD分析表明,(110)晶面衍射峰强度增加,峰位向高角度移动,半高宽减少,薄膜张应力减小,趋于形成(110/220)织构,晶粒平均尺寸为25.6,28.4,45.1 nm. 受潮后薄膜电阻率由1010 Ω·cm量级减少为108 Ω· cm量级. 在3675–3750 cm-1和3560–3640 cm-1位置出现接近游离水而非液态水的红外吸收峰,观察到吸收峰的精细结构,峰分裂源于受离子偶极键影响的羟基与吸附水气液界面处悬键的伸缩振动.Polycrystalline cesium iodide (CsI) thin films were prepared on glass substrates by thermal evaporation. The Influences of air exposure on the structure, resistivity and infrared transmittance of CsI film were investigated by scanning electron microscopy, X-ray diffraction (XRD), high resistance meter and infrared spectrophotometer (IR). It is found that the coalescence of grains occurs and the average grain size increases from 0.36 μm to 1.25 μm. The mechanism of grain growth is attributed to the diffusion of water molecules along grain boundaries and the migration of grain boundaries driven by minimization of total free energy. XRD results indicate the formation of (110/220) texture when exposed to ambient air and the relaxation of tensile stress during recrystallization. The average crystallite sizes obtained from Debye-Scherrer's formula are 25.6 nm, 28.4 nm and 45.1 nm respectively. The resistivity of the film decreases from the order of 1010 Ω·cm to 108 Ω· cm. The IR absorption bands in the ranges of 3675-3750 cm-1 and 3560-3640 cm-1 closely resemble that of free water rather than liquid water. The observed split bands are assigned to the non-hydrogen-bonded OH associated with ion-dipole bonds and dangling OH at air-water interface respectively.
-
Keywords:
- CsI films /
- grain boundary diffusion /
- structural analysis /
- IR vibration
[1] Breskin A 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 371 116
[2] Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209 (in Chinese) [曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209]
[3] Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011 Acta Phys. Sin. 60 029701 (in Chinese) [胡慧君, 赵宝升, 盛立志, 鄢秋荣 2011 物理学报 60 029701]
[4] Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang Q H 2007 Acta Phys. Sin. 56 1447 (in Chinese) [胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447]
[5] Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894 (in Chinese) [李敏, 尼启良, 陈波 2009 物理学报 58 6894]
[6] Molnar L 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 595 27
[7] Halvorson C, Houck T, Macphee A, Opachich Y P, Lahowe D, Copsey B 2010 Rev. Sci. Instrum. 81 10E309
[8] Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102
[9] Xie Y G, Zhang A W, Liu Y B, Liu H B, Hu T, Zhou L, Cai X, Fang J, Yu B X, Ge Y S, L Q W, Sun X L, Sun L J, Xue Z, Xie Y G, Zheng Y H, L J G 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 689 79
[10] Nitti M A, Cioffi N, Nappi E, Singh B K, Valentini A 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 493 16
[11] Triloki, Dutta B, Singh B K 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 695 279
[12] Nitti M A, Senesi G S, Liotino A, Nappi E, Valentini A, Singh B K 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 523 323
[13] Hoedlmoser H, Braem A, de Cataldo G, Davenport M, Di Mauro A, Franco A, Gallas A, Martinengo P, Nappi E, Piuz F, Schyns E 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 574 28
[14] Razin V I, Gotovcev Y N, Kurepin A B, Reshetin A I 1998 Nucl. Instrum. Methods Phys. Res. Sect. A 419 621
[15] Boutboul T, Breskin A, Chechik R, Klein E, Braem A, Lion G, Miné P 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 438 409
[16] Nitti M A, Nappi E, Valentini A, Bénédic F, Bruno P, Cicala G 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 553 157
[17] Almeida J, Braem A, Breskin A, Buzulutskov A, Chechik R, Cohen S, Coluzza C, Conforto E, Margaritondo G, Nappi E, Paic G, Piuz F, Dell'Orto T, Scognetti T, Sgobba S, Tonner B P 1995 Nucl. Instrum. Methods Phys. Res. Sect. A 367 337
[18] Singh B K, Nitti M A, Valentini A, Nappi E, Coluzza C, Di Santo G, Zanoni R 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 581 651
[19] Xie X W, Guo M l 1999 Fundamentals of Materials Science (Beijing: Beihang University Press) p134 (in Chinese) [谢希文, 过梅丽 1999 材料科学基础 (北京: 北京航空航天大学出版社) 第134页]
[20] Hui Z Z, Wang E X, Wan L X 1993 Physics of Surfaces and Interfaces (Chengdu: University of Electronic Science and Technology of China Press) p66 (in Chinese) [恽正中, 王恩信, 完利祥 1993 表面与界面物理 (成都: 电子科技大学出版社) 第66页]
[21] Cui G W 1990 Defect, Diffsion and Sintering (Beijing: Tsinghua University Press) p156 (in Chinese) [崔国文 1990 缺陷, 扩散与烧结 (北京: 清华大学出版社) 第156页]
[22] Lu B, Laughlin D E 2001 The Physics of Ultrahigh-Density Magnetic Recording Chapter 2: Microstructure of Longitudinal Media (Berlin: Springer-Verlag) p12
[23] Zhang L D, Mu J M 2001 Nanomaterials and Nanostucture (Beijing: Sicence Press) p148 (in Chinese) [张立德 牟季美 2001 纳米材料和纳米结构 (北京: 科学出版社) 第148页]
[24] Klug H P, Alexander L E 1974 X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (New York: John Wiley & Sons) p662, 656
[25] Garg P, Rai R, Singh B K 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 736 128
[26] Nix W D, Clemens B M 1999 J. Mater. Res. 14 3467
[27] Foster M C, Ewing G E 2000 J. Chem. Phys. 112 6817
[28] Smart R S C, Sheppard N 1976 J. Chem. Soc. Faraday Trans. 2: Molecular and Chhemical Physics 72 707
[29] Peters S J, Ewing G E 1997 J. Phys. Chem. B 101 10880
-
[1] Breskin A 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 371 116
[2] Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209 (in Chinese) [曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209]
[3] Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011 Acta Phys. Sin. 60 029701 (in Chinese) [胡慧君, 赵宝升, 盛立志, 鄢秋荣 2011 物理学报 60 029701]
[4] Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang Q H 2007 Acta Phys. Sin. 56 1447 (in Chinese) [胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447]
[5] Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894 (in Chinese) [李敏, 尼启良, 陈波 2009 物理学报 58 6894]
[6] Molnar L 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 595 27
[7] Halvorson C, Houck T, Macphee A, Opachich Y P, Lahowe D, Copsey B 2010 Rev. Sci. Instrum. 81 10E309
[8] Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102
[9] Xie Y G, Zhang A W, Liu Y B, Liu H B, Hu T, Zhou L, Cai X, Fang J, Yu B X, Ge Y S, L Q W, Sun X L, Sun L J, Xue Z, Xie Y G, Zheng Y H, L J G 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 689 79
[10] Nitti M A, Cioffi N, Nappi E, Singh B K, Valentini A 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 493 16
[11] Triloki, Dutta B, Singh B K 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 695 279
[12] Nitti M A, Senesi G S, Liotino A, Nappi E, Valentini A, Singh B K 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 523 323
[13] Hoedlmoser H, Braem A, de Cataldo G, Davenport M, Di Mauro A, Franco A, Gallas A, Martinengo P, Nappi E, Piuz F, Schyns E 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 574 28
[14] Razin V I, Gotovcev Y N, Kurepin A B, Reshetin A I 1998 Nucl. Instrum. Methods Phys. Res. Sect. A 419 621
[15] Boutboul T, Breskin A, Chechik R, Klein E, Braem A, Lion G, Miné P 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 438 409
[16] Nitti M A, Nappi E, Valentini A, Bénédic F, Bruno P, Cicala G 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 553 157
[17] Almeida J, Braem A, Breskin A, Buzulutskov A, Chechik R, Cohen S, Coluzza C, Conforto E, Margaritondo G, Nappi E, Paic G, Piuz F, Dell'Orto T, Scognetti T, Sgobba S, Tonner B P 1995 Nucl. Instrum. Methods Phys. Res. Sect. A 367 337
[18] Singh B K, Nitti M A, Valentini A, Nappi E, Coluzza C, Di Santo G, Zanoni R 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 581 651
[19] Xie X W, Guo M l 1999 Fundamentals of Materials Science (Beijing: Beihang University Press) p134 (in Chinese) [谢希文, 过梅丽 1999 材料科学基础 (北京: 北京航空航天大学出版社) 第134页]
[20] Hui Z Z, Wang E X, Wan L X 1993 Physics of Surfaces and Interfaces (Chengdu: University of Electronic Science and Technology of China Press) p66 (in Chinese) [恽正中, 王恩信, 完利祥 1993 表面与界面物理 (成都: 电子科技大学出版社) 第66页]
[21] Cui G W 1990 Defect, Diffsion and Sintering (Beijing: Tsinghua University Press) p156 (in Chinese) [崔国文 1990 缺陷, 扩散与烧结 (北京: 清华大学出版社) 第156页]
[22] Lu B, Laughlin D E 2001 The Physics of Ultrahigh-Density Magnetic Recording Chapter 2: Microstructure of Longitudinal Media (Berlin: Springer-Verlag) p12
[23] Zhang L D, Mu J M 2001 Nanomaterials and Nanostucture (Beijing: Sicence Press) p148 (in Chinese) [张立德 牟季美 2001 纳米材料和纳米结构 (北京: 科学出版社) 第148页]
[24] Klug H P, Alexander L E 1974 X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (New York: John Wiley & Sons) p662, 656
[25] Garg P, Rai R, Singh B K 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 736 128
[26] Nix W D, Clemens B M 1999 J. Mater. Res. 14 3467
[27] Foster M C, Ewing G E 2000 J. Chem. Phys. 112 6817
[28] Smart R S C, Sheppard N 1976 J. Chem. Soc. Faraday Trans. 2: Molecular and Chhemical Physics 72 707
[29] Peters S J, Ewing G E 1997 J. Phys. Chem. B 101 10880
计量
- 文章访问数: 5991
- PDF下载量: 971
- 被引次数: 0