搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前后光栅周期对于双光栅结构薄膜太阳能电池光俘获效应的影响

梁钊铭 吴永刚 夏子奂 周建 秦雪飞

引用本文:
Citation:

前后光栅周期对于双光栅结构薄膜太阳能电池光俘获效应的影响

梁钊铭, 吴永刚, 夏子奂, 周建, 秦雪飞

Influence of front and back grating period on light trapping of dual-grating structure thin film solar cell

Liang Zhao-Ming, Wu Yong-Gang, Xia Zi-Huan, Zhou Jian, Qin Xue-Fei
PDF
导出引用
  • 本文用时域有限差分法对硅层等效厚度为100 nm的具有不同前后光栅周期的介质/金属双光栅结构薄膜太阳能电池进行了模拟分析,比较了三角形最佳相同与不同周期光栅结构的吸收光谱特性,分析了光栅高度、填充比、硅吸收层厚度对最佳相同和不同周期光栅结构光吸收特性的影响,以及相应结构中导致光吸收增强的共振模式. 结果表明前后光栅周期为1:1的共形双光栅结构中存在光泄漏现象,偏离1:1后的光栅结构可有效地抑制低级次衍射光的泄漏,前光栅周期小于后光栅周期的结构光吸收性能的提高来自于平面波导模式在吸收层中的有效激发和传播,而前光栅周期大于后光栅周期的结构光吸收性能的提高则来自于后光栅界面上所激发的等离子体极化模式. 在较厚的硅吸收层厚度,前后光栅周期比为1:2和1:3的电池结构也会出现光泄漏现象,从而使具有最大光吸收效率的结构偏离这些周期比结构的位置.
    In this paper, the influence of different front and back grating period ratio on the optical absorption property of a dual-grating structured thin film solar cell is analyzed using finite difference time domain method. Grating height, fill factor, and thickness of silicon layer are optimized, and the resonance modes that contribute to the absorption enhancement are studied. Results show that light leakage effect exists in the conformal grating structure with grating period ratio of 1:1, the structure with grating period ratio deviating from 1:1 suppresses the light leakage from the silicon active layer. The effective excitation and propagation of waveguide modes in the silicon active layer play an important role in the absorption enhancement of the structure with the front grating period smaller than the back grating period, while the excitation and propagation of the plasmonic modes in the active layer dominate the absorption enhancement of the structure with the front grating period larger than the back grating period. The light leakage effect also exists in the structure with grating period ratio of 1:2 and 1:3 when the silicon active layer is thick. As a result, the structure with the best absorption property deviates from the structures with these grating period ratios.
    • 基金项目: 国家自然科学基金(批准号:60977028)和上海重点科研项目基金(批准号:09JC1413800)资助的课题.
    • Funds: Proect sponsored by the National Natural Science Foundation of China (Grant No. 60977028), and the Key Project Foundation of Shanghai, China (Grant No. 09JC1413800).
    [1]

    Nguyen-Huu N, Cada M, Pištora J 2014 Opt. Express 22 A68

    [2]

    Liu B F, Bai L S, Wei C C, Sun J, Hou G F, Zhao Y, Zhang X D 2013 Acta Phys. Sin. 62 208801(in Chinese) [刘伯飞, 白立沙, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹 2013 物理学报 62 208801]

    [3]

    Jia H X, Luo L, Li B L, Xu Z H, Ren X K, Jiang Y S, Cheng L, Zhang C Y 2013 Acta Phys. Sin 62 168802(in Chinese) [贾河顺, 罗磊, 李秉霖, 徐振华, 任现坤, 姜言森, 程亮, 张春艳 2013 物理学报 62 168802]

    [4]

    Jia Z N, Z X D, Liu Y, Wang F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106

    [5]

    Meng X, Drouard E, Gomard G, Peretti R, Fave A, Seassal C 2012 Opt. Express 20 A560

    [6]

    Deceglie M G, Ferry V E, Alivisatos A P, Atwater H A 2012 Nano Lett. 12 2894

    [7]

    Haase C, Stiebig H 2006 Progress in Photovoltaics: Research and Applications 14 629

    [8]

    Chriki R, Yanai A, Shappir J, Levy U 2013 Opt. Express 21 A382

    [9]

    Biswas R, Xu C 2011 Opt. Express 19 A664

    [10]

    Ferry V E, Polman A, Atwater H A 2011 ACS Nano 5 10055

    [11]

    Madzharov D, Dewan R, Knipp D 2011 Opt. Express 19 A95

    [12]

    Rahul D, Stefan F, Meyer-Rochow V B, Yasemin Ö, Saeed H, Dietmar K 2012 Bioinspir. Biomim. 7 16003

    [13]

    Wang K X, Yu Z, Liu V, Cui Y, Fan S 2012 Nano Letters 12 1616

    [14]

    Abass A, Le K Q, Alù, Burgelman M, Maes B 2012 Physical Review B 85 115449

    [15]

    Heine C, Morf R H 1995 Appl. Opt. 34 2476

    [16]

    Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press) pp571–573

    [17]

    Lumerical FDTD solution, Lumerical.inc www.lumeri-cal.com/[2014-2-5]

    [18]

    Chao C C, Wang C M, Chang J Y 2010 Opt. Express 18 11763

    [19]

    Ferry V E, Sweatlock L A, Pacifici D, Atwater H A 2008 Nano Lett. 8 4391

    [20]

    Abass A, Shen H, Bienstman P, Maes B 2011 J. Appl. Phys. 109 023111

    [21]

    Xiang C P, Liu J T, Xu B Z, Wang W M, Wei X, Song G F, Xu Yun 2014 Chin. Phys. B 23 38803

    [22]

    Raether H 1988 Surface plasmons on smooth and rough surfaces and on gratings (New York: Springer) pp4–6

    [23]

    Hoop T d 1959 Appl. Sci. Res. 8 135

    [24]

    Xia Z H, Wu Y G, Liu R C, Liang Z M, Zhou J, Tang P L 2013 Opt. Express 21 A548

    [25]

    Schuster C S, Kowalczewski P, Martins E R, Patrini M, Scullion M G, Liscidini M, Lewis L, Reardon C, Andreani L C, Krauss T F 2013 Opt. Express 21 A433

  • [1]

    Nguyen-Huu N, Cada M, Pištora J 2014 Opt. Express 22 A68

    [2]

    Liu B F, Bai L S, Wei C C, Sun J, Hou G F, Zhao Y, Zhang X D 2013 Acta Phys. Sin. 62 208801(in Chinese) [刘伯飞, 白立沙, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹 2013 物理学报 62 208801]

    [3]

    Jia H X, Luo L, Li B L, Xu Z H, Ren X K, Jiang Y S, Cheng L, Zhang C Y 2013 Acta Phys. Sin 62 168802(in Chinese) [贾河顺, 罗磊, 李秉霖, 徐振华, 任现坤, 姜言森, 程亮, 张春艳 2013 物理学报 62 168802]

    [4]

    Jia Z N, Z X D, Liu Y, Wang F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106

    [5]

    Meng X, Drouard E, Gomard G, Peretti R, Fave A, Seassal C 2012 Opt. Express 20 A560

    [6]

    Deceglie M G, Ferry V E, Alivisatos A P, Atwater H A 2012 Nano Lett. 12 2894

    [7]

    Haase C, Stiebig H 2006 Progress in Photovoltaics: Research and Applications 14 629

    [8]

    Chriki R, Yanai A, Shappir J, Levy U 2013 Opt. Express 21 A382

    [9]

    Biswas R, Xu C 2011 Opt. Express 19 A664

    [10]

    Ferry V E, Polman A, Atwater H A 2011 ACS Nano 5 10055

    [11]

    Madzharov D, Dewan R, Knipp D 2011 Opt. Express 19 A95

    [12]

    Rahul D, Stefan F, Meyer-Rochow V B, Yasemin Ö, Saeed H, Dietmar K 2012 Bioinspir. Biomim. 7 16003

    [13]

    Wang K X, Yu Z, Liu V, Cui Y, Fan S 2012 Nano Letters 12 1616

    [14]

    Abass A, Le K Q, Alù, Burgelman M, Maes B 2012 Physical Review B 85 115449

    [15]

    Heine C, Morf R H 1995 Appl. Opt. 34 2476

    [16]

    Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press) pp571–573

    [17]

    Lumerical FDTD solution, Lumerical.inc www.lumeri-cal.com/[2014-2-5]

    [18]

    Chao C C, Wang C M, Chang J Y 2010 Opt. Express 18 11763

    [19]

    Ferry V E, Sweatlock L A, Pacifici D, Atwater H A 2008 Nano Lett. 8 4391

    [20]

    Abass A, Shen H, Bienstman P, Maes B 2011 J. Appl. Phys. 109 023111

    [21]

    Xiang C P, Liu J T, Xu B Z, Wang W M, Wei X, Song G F, Xu Yun 2014 Chin. Phys. B 23 38803

    [22]

    Raether H 1988 Surface plasmons on smooth and rough surfaces and on gratings (New York: Springer) pp4–6

    [23]

    Hoop T d 1959 Appl. Sci. Res. 8 135

    [24]

    Xia Z H, Wu Y G, Liu R C, Liang Z M, Zhou J, Tang P L 2013 Opt. Express 21 A548

    [25]

    Schuster C S, Kowalczewski P, Martins E R, Patrini M, Scullion M G, Liscidini M, Lewis L, Reardon C, Andreani L C, Krauss T F 2013 Opt. Express 21 A433

  • [1] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展. 物理学报, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [2] 张翱, 张春秀, 陈云琳, 张春梅, 孟涛. 反式卤素钙钛矿太阳能电池光伏性能的理论研究. 物理学报, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [3] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [4] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [5] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [6] 薛丁江, 石杭杰, 唐江. 新型硒化锑材料及其光伏器件研究进展. 物理学报, 2015, 64(3): 038406. doi: 10.7498/aps.64.038406
    [7] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [8] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [9] 张志刚, 刘丰瑞, 张青川, 程腾, 高杰, 伍小平. 红外显微观测被俘获吸光性颗粒. 物理学报, 2013, 62(20): 208702. doi: 10.7498/aps.62.208702
    [10] 潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德. 铜铟镓硒太阳能电池多层膜的结构分析. 物理学报, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [11] 鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥. 色散周期结构的辅助场时域有限差分法分析. 物理学报, 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [12] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究. 物理学报, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [13] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力. 物理学报, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [14] 王慧琴, 方利广, 王一凡, 余奥列. 光子晶体晶粒尺寸和排列结构对随机激光辐射特性的影响. 物理学报, 2011, 60(1): 014203. doi: 10.7498/aps.60.014203
    [15] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [16] 王慧琴, 刘正东. 光子晶体对非晶纳米团簇辐射特性的影响. 物理学报, 2009, 58(3): 1648-1654. doi: 10.7498/aps.58.1648
    [17] 张艳峰, 李玉栋, 赵立华, 刘洪冰, 陈靖, 崔国新, 许京军, 孙骞. 高斯光束中吸收双层球形微粒的横向光俘获. 物理学报, 2009, 58(1): 258-263. doi: 10.7498/aps.58.258
    [18] 白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究. 物理学报, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [19] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析. 物理学报, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [20] 王慧琴, 刘正东, 王 冰. 二维随机介质中的能量分布和频谱特性. 物理学报, 2008, 57(9): 5550-5557. doi: 10.7498/aps.57.5550
计量
  • 文章访问数:  4692
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-28
  • 修回日期:  2014-05-29
  • 刊出日期:  2014-10-05

/

返回文章
返回