-
针对目前最常用的KTP倍频晶体, 综合考虑其有效非线性系数和温度半宽度, 采用折中设计有效扩展KTP倍频器件适用温度范围. 对大适用温度范围的KTP倍频器件的设计方法进行了详细的理论分析, 并设计了一种温度半宽度为-20 ℃到50 ℃的KTP倍频器件. 实验结果表明该器件在15 ℃时达到峰值转换效率22.7%, 温度半宽度为70 ℃. 和通常情况下设计的KTP倍频器件相比, 尽管倍频转换效率有所下降, 但显著提高了适用温度范围. 且在温度半宽度高达70 ℃情况下, 其有效非线性系数仍大于LBO, BBO等倍频器件. 该方法对于扩展倍频器件的温度适应性具有普适性.For the most commonly used KTP frequency-doubling crystal, its temperature adaptability range should be effectively extended. For this purpose, a compromise design is given by compreflensively considering both its effective nonlinear coefficient and the half-width of temperature range. The design method of KTP frequency-doubling device with a wide temperature range is analyzed in detail; furthermore, the curves of effective nonlinear coefficients, acceptance angles, and walk-off angles as a function of phase-matching angle are plotted via computer simulation. According to the results of theoretical study, a device used in the temperature range from -20 ℃ to 50 ℃ is designed and validated experimentally by the KTP external cavity frequency-doubling laser. Experimental results indicate that a peak conversion efficiency of 22.7% at 15 ℃ with a 70 ℃ temperature halfwidth is achieved by using the designed device. Compared with the commonly designed KTP frequency-doubling device, the temperature adaptability range increases notably although its frequency conversion efficiency decreases a little. Additionally, the effective nonlinear coefficient is still bigger than that of the commonly used crystals such as LBO and BBO when temperature halfwidth increases to 70 ℃. The above method would have the potential for extending the temperature adaptability range of other frequency-doubling devices.
-
Keywords:
- nonlinear optical effect /
- frequency-doubling device /
- temperature adaptability /
- phase-matching
[1] Wang Y Y, Xu D G, Liu C M, Wang W P, Yao J Q 2012 Chin. Phys. B 21 094212
[2] Zhang Y P, Zhang H Y, He Z H, Wang P, Li X F, Yao J Q 2009 Acta Phys. Sin. 58 4647 (in Chinese) [张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨 2009 物理学报 58 4647]
[3] Zhang H Y, Zhang Y P, Zhong K, Wang P, Li X F, Yao J Q 2008 Chinese J. Lasers 35 3 (in Chinese) [张会云, 张玉萍, 钟凯, 王鹏, 李喜福, 姚建铨 2008 中国激光 35 3]
[4] Grechin S G, Dmitriev V G, D’yakov V A, Pryalkin V I 1998 IEEE J. Quant. Elect. 28 937
[5] Grechin S G, Dmitriev V G, D’yakov V A, Pryalkin V I 1999 IEEE J. Quant. Elect. 29 77
[6] Ma Y H, Zhao J L, Wang W L, Huang W D 2005 Acta Phys. Sin. 54 2084 (in Chinese) [马仰华, 赵建林, 王文礼, 黄卫东 2005 物理学报 54 2084]
[7] Kato K 1991 IEEE J. Quant. Elect. 27 1137
[8] Kato K 1992 IEEE J. Quant. Elect. 28 1974
[9] Yao J Q, Xu D G 2007 All Solid State Laser and Nonlinear Optical Frequency Coversion Technology (Beijing: Higher Education Press) p681 (in Chinese) [姚建铨, 徐德刚2007 全固态激光及非线性光学频率变换技术 (北京: 科学出版社) 第681页]
[10] Czeranowsky C, Heumann E, Huber G 2003 Opt. Lett. 28 432
[11] Kellner T, Heine F, Huber G 1997 Appl. Phys. B-Lasers O. 65 789
[12] Zheng Q, Zhao L 2004 Opt. Laser Technol. 36 449
[13] Zheng Q, Zhao L, Dong S M 2004 Chinese J. Lasers 31 1030 (in Chinese) [郑权, 赵岭, 董胜明 2004 中国激光 31 1030]
-
[1] Wang Y Y, Xu D G, Liu C M, Wang W P, Yao J Q 2012 Chin. Phys. B 21 094212
[2] Zhang Y P, Zhang H Y, He Z H, Wang P, Li X F, Yao J Q 2009 Acta Phys. Sin. 58 4647 (in Chinese) [张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨 2009 物理学报 58 4647]
[3] Zhang H Y, Zhang Y P, Zhong K, Wang P, Li X F, Yao J Q 2008 Chinese J. Lasers 35 3 (in Chinese) [张会云, 张玉萍, 钟凯, 王鹏, 李喜福, 姚建铨 2008 中国激光 35 3]
[4] Grechin S G, Dmitriev V G, D’yakov V A, Pryalkin V I 1998 IEEE J. Quant. Elect. 28 937
[5] Grechin S G, Dmitriev V G, D’yakov V A, Pryalkin V I 1999 IEEE J. Quant. Elect. 29 77
[6] Ma Y H, Zhao J L, Wang W L, Huang W D 2005 Acta Phys. Sin. 54 2084 (in Chinese) [马仰华, 赵建林, 王文礼, 黄卫东 2005 物理学报 54 2084]
[7] Kato K 1991 IEEE J. Quant. Elect. 27 1137
[8] Kato K 1992 IEEE J. Quant. Elect. 28 1974
[9] Yao J Q, Xu D G 2007 All Solid State Laser and Nonlinear Optical Frequency Coversion Technology (Beijing: Higher Education Press) p681 (in Chinese) [姚建铨, 徐德刚2007 全固态激光及非线性光学频率变换技术 (北京: 科学出版社) 第681页]
[10] Czeranowsky C, Heumann E, Huber G 2003 Opt. Lett. 28 432
[11] Kellner T, Heine F, Huber G 1997 Appl. Phys. B-Lasers O. 65 789
[12] Zheng Q, Zhao L 2004 Opt. Laser Technol. 36 449
[13] Zheng Q, Zhao L, Dong S M 2004 Chinese J. Lasers 31 1030 (in Chinese) [郑权, 赵岭, 董胜明 2004 中国激光 31 1030]
计量
- 文章访问数: 7257
- PDF下载量: 564
- 被引次数: 0