搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌干扰中基于同步挤压小波变换的谐波信号提取方法

汪祥莉 王斌 王文波 喻敏 王震 常毓禅

引用本文:
Citation:

混沌干扰中基于同步挤压小波变换的谐波信号提取方法

汪祥莉, 王斌, 王文波, 喻敏, 王震, 常毓禅

Harmonic signal extraction from chaotic interference based on synchrosqueezed wavelet transform

Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min, Wang Zhen, Chang Yu-Chan
PDF
导出引用
  • 针对混沌干扰背景下多个谐波信号的提取问题, 提出了一种基于同步挤压小波变换(SST)的谐波信号抽取方法. 首先利用SST将混沌信号和谐波信号组成的混合信号分解为不同的内蕴模态类函数, 然后利用Hilbert变换对分离出的内蕴模态类函数进行频率识别, 从中分离出各谐波信号. 以Duffing混沌背景为例, 对混沌干扰下多谐波信号的提取进行了实验分析. 实验结果表明: 对于不同频率间隔的多个谐波分量, 本文方法的提取结果都具有较高的精度, 而且所提方法对高斯白噪声的干扰具有较好的鲁棒性, 综合提取效果优于经典的经验模态分解方法.
    Extracting the harmonic signal from the chaotic interference background is very important for theory and practical application. The wavelet transform and empirical mode decomposition (EMD) have been widely applied to harmonic extraction from chaotic interference, but because the wavelet and EMD both present the mode mixing and are sensitive to noise, the harmonic signal often cannot be precisely separated out. The synchrosqueezing wavelet transform (SST) is based on the continuous wavelet transform, through compressing the time-frequency map of wavelet transform in the frequency domain, the highly accurate time-frequency curve is obtained. The time-frequency curve of SST which does not exist between cross terms, can better improve the mode mixing. The SST has also good robustness against noise. When the signal is a mixed strong noise, the SST can still obtain the clear time-frequency curve and approximate invariant decomposition results. In this paper, the SST is applied to the multiple harmonic signal extraction from chaotic interference background, and a new harmonic extracting method is proposed based on the SST. First, the signal obtained by mixing chaotic and harmonic signals is decomposed into intrinsic mode type function (IMTF) by the SST. Then using the Hilbert transform the frequency of each IMTF is analyzed, and the harmonic signals are separated from the mixed signal. Selecting the Duffing signal as the chaotic interference signal, the extracting ability of the proposed method for multiple harmonic signals is analyzed. The different harmonic extraction experiments are conducted by using the proposed SST method for different frequency intervals and different noise intensity multiple harmonic signals. And the experimental results are compared with those from the classical EMD method. When the chaotic interference signal is not contained by noise, the harmonic signal extraction effect is seriously affected by the frequency interval between harmonic signals. If the harmonic frequency interval between harmonic signals is relatively narrow, each harmonic signal cannot be accurately extracted by the EMD method. However, the harmonic extraction precision of SST method is not seriously influenced by the change of harmonic frequency interval, and when the frequency interval between harmonic signals is small the SST method can still accurately extract each harmonic signal from chaotic interference. When the noise contains a chaotic interference signal, the harmonic extraction effect of EMD method significantly decreases with noise intensity increasing. When the noise level reaches 80%, the extracted harmonic signal from the EMD method is seriously distorted, the correlation coefficient of the extracted harmonic signal with original harmonic signal is only about 0.6. With the increase of noise intensity, the harmonic extraction effect of SST method has also a declining trend. But as the noise intensity is within 120%, the harmonic extraction effect of SST method does not greatly change and the extracted harmonic signal precision is still higher, which shows that the harmonic extraction method based on the SST has good robustness against noise. The comprehensive experimental results show that the proposed SST method has high extracting precision for multiple harmonic signals of different frequency intervals, and the SST method has better robustness against Gauss white noise. The extracted results of harmonic signal are better than those from the classical empirical mode decomposition method.
    • 基金项目: 国家自然科学基金(批准号: 11201354)、卫星海洋环境动力学国家重点实验室开放基金(批准号: SOED1405)和冶金工业过程系统科学湖北省重点实验室开放基金(批准号: Z201303)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11201354), Foundation of State Key Laboratory of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Foundation of Hubei Province Key Laboratory of Metallurgical Industry Process System Science, China (Grant No. Z201303).
    [1]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 069701 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 069701]

    [2]

    Lu K, Wang F Z, Zhang G L, Fu W H 2013 Chin. Phys. B 22 120202

    [3]

    Li T Z, Wang Y, Luo M K 2013 Chin. Phys. B 22 080501

    [4]

    Lu S X, Wang Z S, Hu Z H, Feng J C 2014 Chin. Phys. B 23 010506

    [5]

    Xing H Y, Cheng Y Y, Xu W 2012 Acta Phys. Sin. 61 100506 (in Chinese) [行鸿彦, 程艳燕, 徐伟 2012 物理学报 61 100506]

    [6]

    Leung H, Huang X P 1996 IEEE Trans. Sign. Process. 44 2456

    [7]

    Haykin S, Li X B 1995 Proc. IEEE 83 94

    [8]

    Stark J, Arumugaw B 1992 Int. J. Bifurc. Chaos 2 413

    [9]

    Wang F P, Guo J B, Wang Z J 2001 Acta Phys. Sin. 50 1019 (in Chinese) [汪芙平, 郭静波, 王赞基 2001 物理学报 50 1019]

    [10]

    Huang N E, Shen Z, Long S R 1998 Proc. Roy. Soc. London A 454 903

    [11]

    Wang G G, Wang S X 2006 J. Jilin Univ. (Sci. Ed.) 44 439 (in Chinese) [王国光, 王树勋 2006 吉林大学学报(理学版) 44 439]

    [12]

    Li H G, Meng G 2004 Acta Phys. Sin. 53 2069 (in Chinese) [李鸿光, 孟光 2004 物理学报 53 2069]

    [13]

    Wang E F, Wang D Q, Ding Q 2011 J. Commun. 32 60 (in Chinese) [王尔馥, 王冬青, 丁群 2011 通信学报 32 60]

    [14]

    Wang E F, Wang D Q 2012 J. Engineer. Heilongjiang Univ. 3 105 (in Chinese) [王尔馥, 王冬青 2012 黑龙江大学工程学报 3 105]

    [15]

    Chen G D, Wang Z C 2012 Mech. Syst. Sign. Process. 28 259

    [16]

    Liu J L, Ren W X, Wang Z C, Hu Y D 2013 J. Vib. Shock 32 37 (in Chinese) [刘景良, 任伟新, 王佐材, 胡异丁 2013 振动与冲击 32 37]

    [17]

    Daubechies I, Lu J F, Wu H T 2011 Appl. Computat. Harmon. Anal. 2 243

    [18]

    Wu H T 2013 Appl. Computat. Harmon. Anal. 35 181

    [19]

    Gaurav T, Eugene B, Neven S F, Wu H T 2012 Sign. Process. 93 1079

    [20]

    Sylvain M, Thomas O, Stephen M 2012 IEEE Trans. Sign. Process. 60 5787

  • [1]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 069701 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 069701]

    [2]

    Lu K, Wang F Z, Zhang G L, Fu W H 2013 Chin. Phys. B 22 120202

    [3]

    Li T Z, Wang Y, Luo M K 2013 Chin. Phys. B 22 080501

    [4]

    Lu S X, Wang Z S, Hu Z H, Feng J C 2014 Chin. Phys. B 23 010506

    [5]

    Xing H Y, Cheng Y Y, Xu W 2012 Acta Phys. Sin. 61 100506 (in Chinese) [行鸿彦, 程艳燕, 徐伟 2012 物理学报 61 100506]

    [6]

    Leung H, Huang X P 1996 IEEE Trans. Sign. Process. 44 2456

    [7]

    Haykin S, Li X B 1995 Proc. IEEE 83 94

    [8]

    Stark J, Arumugaw B 1992 Int. J. Bifurc. Chaos 2 413

    [9]

    Wang F P, Guo J B, Wang Z J 2001 Acta Phys. Sin. 50 1019 (in Chinese) [汪芙平, 郭静波, 王赞基 2001 物理学报 50 1019]

    [10]

    Huang N E, Shen Z, Long S R 1998 Proc. Roy. Soc. London A 454 903

    [11]

    Wang G G, Wang S X 2006 J. Jilin Univ. (Sci. Ed.) 44 439 (in Chinese) [王国光, 王树勋 2006 吉林大学学报(理学版) 44 439]

    [12]

    Li H G, Meng G 2004 Acta Phys. Sin. 53 2069 (in Chinese) [李鸿光, 孟光 2004 物理学报 53 2069]

    [13]

    Wang E F, Wang D Q, Ding Q 2011 J. Commun. 32 60 (in Chinese) [王尔馥, 王冬青, 丁群 2011 通信学报 32 60]

    [14]

    Wang E F, Wang D Q 2012 J. Engineer. Heilongjiang Univ. 3 105 (in Chinese) [王尔馥, 王冬青 2012 黑龙江大学工程学报 3 105]

    [15]

    Chen G D, Wang Z C 2012 Mech. Syst. Sign. Process. 28 259

    [16]

    Liu J L, Ren W X, Wang Z C, Hu Y D 2013 J. Vib. Shock 32 37 (in Chinese) [刘景良, 任伟新, 王佐材, 胡异丁 2013 振动与冲击 32 37]

    [17]

    Daubechies I, Lu J F, Wu H T 2011 Appl. Computat. Harmon. Anal. 2 243

    [18]

    Wu H T 2013 Appl. Computat. Harmon. Anal. 35 181

    [19]

    Gaurav T, Eugene B, Neven S F, Wu H T 2012 Sign. Process. 93 1079

    [20]

    Sylvain M, Thomas O, Stephen M 2012 IEEE Trans. Sign. Process. 60 5787

  • [1] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距. 物理学报, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [2] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [3] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [4] 李广明, 胡志辉. 基于人工蜂群算法的混沌信号盲提取. 物理学报, 2016, 65(23): 230501. doi: 10.7498/aps.65.230501
    [5] 汪祥莉, 王斌, 王文波, 喻敏. 混沌背景下非平稳谐波信号的自适应同步挤压小波变换提取. 物理学报, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [6] 秦利, 刘福才, 梁利环, 侯甜甜. 基于液体晃动干扰观测器的航天器混沌姿态H∞控制. 物理学报, 2014, 63(9): 090502. doi: 10.7498/aps.63.090502
    [7] 张鲲, 张扬, 查晓明, 熊一, 彭光强, 樊友平. 交直交型机车的高频谐波混沌分析. 物理学报, 2012, 61(20): 200512. doi: 10.7498/aps.61.200512
    [8] 宋彤, 李菡. 基于小波回声状态网络的混沌时间序列预测. 物理学报, 2012, 61(8): 080506. doi: 10.7498/aps.61.080506
    [9] 余海军, 杜建明, 张秀兰. 相干态的小波变换. 物理学报, 2012, 61(16): 164205. doi: 10.7498/aps.61.164205
    [10] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块离散小波变换的图像信息隐藏与盲提取算法. 物理学报, 2012, 61(8): 084203. doi: 10.7498/aps.61.084203
    [11] 符懋敬, 庄建军, 侯凤贞, 宁新宝, 展庆波, 邵毅. 基于小波变换的人体步态序列提取. 物理学报, 2010, 59(6): 4343-4350. doi: 10.7498/aps.59.4343
    [12] 范永全, 张家树. 基于集员估计的混沌通信窄带干扰抑制技术. 物理学报, 2008, 57(5): 2714-2721. doi: 10.7498/aps.57.2714
    [13] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [14] 郝建红, 孙志华, 许海波. 干扰信号对两种混沌加密系统的影响及分析. 物理学报, 2007, 56(12): 6857-6864. doi: 10.7498/aps.56.6857
    [15] 邓玉强, 邢岐荣, 郎利影, 柴 路, 王清月, 张志刚. THz波的小波变换频谱分析. 物理学报, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [16] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [17] 李鸿光, 孟 光. 基于经验模式分解的混沌干扰下谐波信号的提取方法. 物理学报, 2004, 53(7): 2069-2073. doi: 10.7498/aps.53.2069
    [18] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数. 物理学报, 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
    [19] 汪芙平, 郭静波, 王赞基, 萧达川, 李茂堂. 强混沌干扰中的谐波信号提取. 物理学报, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
    [20] 王忠勇, 蔡远利, 贾 冬. 混沌系统的小波基控制. 物理学报, 1999, 48(2): 206-212. doi: 10.7498/aps.48.206
计量
  • 文章访问数:  7347
  • PDF下载量:  5138
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-31
  • 修回日期:  2014-12-25
  • 刊出日期:  2015-05-05

/

返回文章
返回