搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池多尺度数值模型的应用现状及发展前景

程昀 李劼 贾明 汤依伟 杜双龙 艾立华 殷宝华 艾亮

引用本文:
Citation:

锂离子电池多尺度数值模型的应用现状及发展前景

程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮

Application status and future of multi-scale numerical models for lithium ion battery

Cheng Yun, Li Jie, Jia Ming, Tang Yi-Wei, Du Shuang-Long, Ai Li-Hua, Yin Bao-Hua, Ai Liang
PDF
导出引用
  • 锂离子电池是一种较为复杂的电化学系统, 其涵盖质量传递、电荷传递、热量传递以及多种电化学反应等物理化学过程. 其不仅物理尺度跨越大, 从微观活性颗粒、极片、电芯跨越到电池模组, 还面临着成组配对以及均衡性的问题, 这些问题加剧了电池设计和性能综合评估的难度. 通过计算机数值仿真技术, 建立数学模型, 全面和系统地捕捉电池工作过程各物理场的相互作用机理, 分析其演化规律, 能够为优化电池系统设计提供理论支撑. 本文对锂离子电池的数值模型研究进展和发展趋势进行了综述. 同时对主要理论模型进行了分类整理, 总结了它们的特点、适用范围和局限性, 指出了将来进一步研究的方向和难点所在, 这些对锂离子电池多尺度数值模型的理论研究和工程应用都具有指导性的意义.
    Lithium ion battery is nowadays one of the most popular energy storage devices due to its high energy, power density and cycle life characteristics. It has been known that the overall performance of battery depends on not only electrolyte and electrode materials, but also operation condition and choice of physical parameters. Designers need to understand the thermodynamic and kinetic characteristics of battery, which is costly and time-consuming by experimental methods. However, lithium ion battery is a complicated electrochemical system with multi physicochemical processes including the mass, charge, and energy conservations as well as the electrochemical kinetics. It not only has a typical multiple level arrangement: across the electrode level, cell level, and extending to the battery module level, which is different from the basic active material particle level arrangement, but also confronts the challenges to meeting the requirements for sorting and consistency method for battery. These facts increase the difficulties in designing the battery and evaluating the overall performance. Owing to the rapid development of multi-scale numerical simulation technology, the multi-scale mathematical models for lithium ion battery are developed to help battery designer comprehensively and systematically gain the interaction mechanisms between different physicochemical fields in the battery working process and analyze the regulations of these interaction mechanisms, which is significant in providing theoretical supports for designing and optimizing the battery systems. At present, multi-type lithium ion battery models coupled with many physicochemical processes have been developed on different scales to study different issues, such as thermal behavior, inner polarization, micro structure, inner stress and capacitance fading, etc. In this paper, we review the research statuses and development trends of multi-scale mathematical models for lithium ion battery. The primary theoretical models for lithium ion battery are systemized and their features, application ranges and limitations are also summarized. Furthermore, the future research area and the difficulty in industry application are discussed. All of these are helpful for the theoretic research and engineering application of the multi-scale numerical models for lithium ion battery.
      通信作者: 贾明, jiamingsunmoon@aliyun.com
    • 基金项目: 国家自然科学基金(批准号: 51204211)、中南大学博士研究生自主探索创新项目(批准号: 2015zzts033)和湖南省科技计划(批准号: 2014ZK3080)资助的课题.
      Corresponding author: Jia Ming, jiamingsunmoon@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51204211), the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2015zzts033), and the Science and Technology Program of Hunan Province, China (Grant No. 2014ZK3080).
    [1]

    Lu L G, Han X B, Li J Q, Hua J F, Ouyang M G2013 J. Power Sources 226 272

    [2]

    Rao Z H, Wang S F 2011 Renew Sust. Energ. Rev. 15 4554

    [3]

    Newman J, Thomas-Alyea E K 2004 Electrochemical Systems (3rd Ed.) (Hoboken: John Wiley & Sons) pp1-21

    [4]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [5]

    Franco A A 2013 RSC Advances 3 13027

    [6]

    Feng Y 2008 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [冯毅 2008 博士学位论文 (北京: 中国科学院研究生院)]

    [7]

    Buller S, Thele M, De Doncker R W A A, Karden E 2005 IEEE T. Ind. Appl. 41 742

    [8]

    Karden E, Mauracher P, Schöpe F 1997 J. Power Sources 64 175

    [9]

    Gomez J, Nelson R, Kalu E E, Weatherspoon M H, Zheng J P 2011 J. Power Sources 196 4826

    [10]

    Cho S, Jeong H, Han C, Jin S, Lim J H, Oh J 2012 Computers & Amp; Chemical Engineering 4 1

    [11]

    Hu X, Li S, Peng H 2012 J. Power Sources 198 359

    [12]

    Wang Z P, Liu P, Wang L 2013 Chin. Phys. B 22 088801

    [13]

    Xu L, Wang J P, Chen Q S 2012 Energy Conversion and Management 53 33

    [14]

    Fang K, Mu D, Chen S, Wu B, Wu F 2012 J. Power Sources 208 378

    [15]

    Capizzi G, Bonanno F, Tina G M 2011 IEEE T. Energy Conver 26 435

    [16]

    Bi J, Shao S, Guan W, Wang L 2012 Chin. Phys. B 21 118801

    [17]

    Brand J, Zhang Z, Agarwal R K 2014 J. Power Sources 247 729

    [18]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [19]

    Shi J X, Xue X J 2011 J. Electrochem. Soc. 158 B143

    [20]

    Yann Liaw B, Nagasubramanian G, Jungst R G, Doughty D H 2004 Solid State Ionics 175 835

    [21]

    Chiang Y H, Sean W Y, Ke J C 2011 J. Power Sources 196 3921

    [22]

    Kim T, Qiao W 2011 IEEE T. Energy Conver 26 1172

    [23]

    Cho S, Jeong H, Han C, Jin S, Lim J H, Oh J 2012 Comput Chem. Eng. 41 1

    [24]

    Daniel C, Besenhard J O 2011 Handbook of Battery Materials Second Edition (Weinheim: Wiley-VCH) pp844

    [25]

    Bernardi D, Pawlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5

    [26]

    Kim U S, Shin C B, Kim C S 2009 J. Power Sources. 189 841

    [27]

    Lee J, Choi K W, Yao N P, Christianson C C 1986 J. Electrochem. Soc. 133 1286

    [28]

    Gu W B, Wang C Y 2000 J. Electrochem. Soc. 147 2910

    [29]

    Guo G F, Long B, Cheng B, Zhou S Q, Xu P, Cao B G 2010 J. Power Sources 195 2393

    [30]

    Lee K-J, Smith K, Pesaran A, Kim G-H 2013 J. Power Sources 241 20

    [31]

    Guo M, Kim G-H, White R E 2013 J. Power Sources 240 80

    [32]

    Jeon D H, Baek S M 2011 Energy Convers. Manage. 52 2973

    [33]

    Zhang X W 2011 Electrochim. Acta 56 1246

    [34]

    Newman J, Tiedemann W 1975 AIChE Journal 21 25

    [35]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [36]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [37]

    Rao L, Newman J 1997 J. Electrochem. Soc. 144 2697

    [38]

    Zhang Q, Guo Q Z, White R E 2007 J. Power Sources 165 427

    [39]

    Zhang Q, White R E 2007 J. Electrochem. Soc. 154 A587

    [40]

    Srinivasan V, Newman J 2004 J. Electrochem. Soc. 151 A1517

    [41]

    Srinivasan V, Newman J 2004 J. Electrochem. Soc. 151 A1530

    [42]

    Ye Y H, Shi Y X, Tay A A O 2012 J. Power Sources 217 509

    [43]

    Saw L H, Ye Y, Tay A A O 2013 Energy Convers. Manage 75 162

    [44]

    Safari M, Delacourt C 2011 J. Electrochem. Soc. 158 A562

    [45]

    Li J, Cheng Y, Jia M, Tang Y, Lin Y, Zhang Z, Liu Y 2014 J. Power Sources 255 130

    [46]

    Wang S R, Lu L L, Liu X J 2013 J. Power Sources 244 101

    [47]

    Chen Y F, Evans J W 1994 J. Electrochem. Soc. 141 2947

    [48]

    Li J, Cheng Y, Ai L H, Jia M, Du S L, Yin B H, Woo S, Zhang H L 2015 J. Power Sources 293 993

    [49]

    Du S L, Jia M, Cheng Y, Tang Y W, Zhang H L, Ai L H, Zhang K, Lai Y Q 2015 Int. J. Therm. Sci. 89 327

    [50]

    Tang Y W, Jia M, Cheng Y, Zhang K, Zhang H L, Li J 2013 Acta Phys. Sin. 62 158201 (in Chinese) [汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼 2013 物理学报 62 158201]

    [51]

    Bandhauer T M, Garimella S, Fuller T F 2011 J. Electrochem. Soc. 158 R1

    [52]

    Xun J Z, Liu R, Jiao K 2013 J. Power Sources 233 47

    [53]

    Xu X M, He R 2013 J. Power Sources 240 33

    [54]

    Khateeb S A, Farid M M, Selman J R, Al-Hallaj S 2004 J. Power Sources 128 292

    [55]

    Zavalis T G, Klett M, Kjell M H, Behm M, Lindström R W, Lindbergh G 2013 Electrochim. Acta 110 335

    [56]

    Bohn E, Eckl T, Kamlah M, McMeeking R 2013 J. Electrochem. Soc. 160 A1638

    [57]

    Dai Y, Cai L, White R E 2014 J. Power Sources 247 365

    [58]

    Hao F, Fang D N 2013 J. Electrochem. Soc. 160 A595

    [59]

    Song Y C, Lu B, Ji X, Zhang J Q 2012 J. Electrochem. Soc. 159 A2060

    [60]

    Schalkwijk W V, Scrosati B 2002 Advances in Lithium-Ion Batteries (New York: Kluwer Academic Publishers) pp378

    [61]

    Zhang D, Popov B N, White R E 2000 J. Electrochem. Soc. 147 831

    [62]

    Guo M, Kumaresan K, Sikha G, White R 2008 ECS Meeting Abstracts 801 39

    [63]

    Ning G, Popov B N 2004 J. Electrochem. Soc. 151 A1584

    [64]

    Ning G, White R E, Popov B N 2006 Electrochim. Acta 51 2012

    [65]

    Evans T I, White R E 1987 J. Electrochem. Soc. 134 2725

    [66]

    Santhanagopalan S, Guo Q Z, Ramadass P, White R E 2006 J. Power Sources 156 620

    [67]

    Huang L, Li Jian Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建远 2015 物理学报 64 108202]

    [68]

    Guo M, Sikha G, White R E 2011 J. Electrochem. Soc. 158 S11

    [69]

    Renganathan S, White R E 2011 J. Power Sources 196 442

    [70]

    Chung M D, Seo J H, Zhang X C, Sastry A M 2011 J. Electrochem. Soc. 158 A371

    [71]

    Yi Y B, Wang C W; Sastry A M 2006 ASME J. Eng. Mater. Techonol. 128 73

    [72]

    Wang C W, Sastry A M 2007 J. Electrochem. Soc. 154 A1035

    [73]

    Goldin G M, Colclasure A M, Wiedemann A H, Kee R 2012 J Electrochim. Acta 64 118

    [74]

    Gupta A, Seo J H, Zhang X, Du W, Sastry A M, Shyy W 2011 J. Electrochem. Soc. 158 A487

    [75]

    Garcia R E, Chiang Y M, Carter W C, Limthongkul P, Bishop C M 2005 J. Electrochem. Soc. 152 A255

    [76]

    Zeng J B, Jiang F M 2013 Acta Phys. Chim. Sin. 29 2371 (in Chinese) [曾建邦, 蒋方明 2013 物理化学学报 29 2371]

    [77]

    Smith M, García R E, Horn Q C 2009 J. Electrochem. Soc. 156 A896

    [78]

    Wargo E A, Kotaka T, Tabuchi Y, Kumbur E C 2013 J. Power Sources 241 608

    [79]

    Wilson J R, Cronin J S, Barnett S A, Harris S J 2011 J. Power Sources 196 3443

    [80]

    Stephenson D E, Walker B C, Skelton C B, Gorzkowski E P, Rowenhorst D J, Wheeler D R 2011 J. Electrochem. Soc. 158 A781

    [81]

    Ender M, Joos J, Carraro T, Ivers-Tiffée E 2012 J. Electrochem. Soc. 159 A972

    [82]

    Wu W, Jiang F M, Chen Z, Wang Y, Zhao F G, ZENG Y Q 2013 J Inorg Mater 28 1243 (in Chinese) [吴伟, 蒋方明, 陈治, 汪颖, 赵丰刚, 曾毓群 2013 无机材料学报 28 1243]

    [83]

    Wu W, Jiang F M, Zeng J B 2013 Acta Phys. Chim. Sin. 29 2361 (in Chinese) [吴伟, 蒋方明, 曾建邦 2013 物理化学学报 29 2361]

    [84]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 物理学报 63 048202]

    [85]

    Hutzenlaub T, Asthana A, Becker J, Wheeler D R, Zengerle R, Thiele S 2013 Electrochem Commun. 27 77

    [86]

    Hutzenlaub T, Thiele S, Paust N, Spotnitz R, Zengerle R, Walchshofer C 2014 Electrochim. Acta 115 131

    [87]

    Shearing P R, Howard L E, Jørgensen P S, Brandon N P, Harris S J 2010 Electrochem Commun. 12 374

    [88]

    Yan B, Lim C, Yin L L, Zhu L K 2012 J. Electrochem. Soc. 159 A1604

    [89]

    Yan B, Lim C, Yin L L, Zhu L K 2013 Electrochim. Acta 100 171

    [90]

    Tariq F, Yufit V, Kishimoto M, Shearing P R, Menkin S, Golodnitsky D, Gelb J, Peled E, Brandon N P 2014 J. Power Sources 248 1014

    [91]

    Lim C, Yan B, Yin L, Zhu L K 2012 Electrochim. Acta 75 279

    [92]

    Liu Z, Cronin J S, Chen-Wiegart Y-C K, Wilson J R, Yakal-Kremski K J, Wang J, Faber K T, Barnett S A 2013 J. Power Sources 227 267

    [93]

    Chen-Wiegart, Karen Y-c, Liu Z, Faber K T, Barnett S A, Wang J 2013 Electrochem Commun. 28 127

  • [1]

    Lu L G, Han X B, Li J Q, Hua J F, Ouyang M G2013 J. Power Sources 226 272

    [2]

    Rao Z H, Wang S F 2011 Renew Sust. Energ. Rev. 15 4554

    [3]

    Newman J, Thomas-Alyea E K 2004 Electrochemical Systems (3rd Ed.) (Hoboken: John Wiley & Sons) pp1-21

    [4]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [5]

    Franco A A 2013 RSC Advances 3 13027

    [6]

    Feng Y 2008 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [冯毅 2008 博士学位论文 (北京: 中国科学院研究生院)]

    [7]

    Buller S, Thele M, De Doncker R W A A, Karden E 2005 IEEE T. Ind. Appl. 41 742

    [8]

    Karden E, Mauracher P, Schöpe F 1997 J. Power Sources 64 175

    [9]

    Gomez J, Nelson R, Kalu E E, Weatherspoon M H, Zheng J P 2011 J. Power Sources 196 4826

    [10]

    Cho S, Jeong H, Han C, Jin S, Lim J H, Oh J 2012 Computers & Amp; Chemical Engineering 4 1

    [11]

    Hu X, Li S, Peng H 2012 J. Power Sources 198 359

    [12]

    Wang Z P, Liu P, Wang L 2013 Chin. Phys. B 22 088801

    [13]

    Xu L, Wang J P, Chen Q S 2012 Energy Conversion and Management 53 33

    [14]

    Fang K, Mu D, Chen S, Wu B, Wu F 2012 J. Power Sources 208 378

    [15]

    Capizzi G, Bonanno F, Tina G M 2011 IEEE T. Energy Conver 26 435

    [16]

    Bi J, Shao S, Guan W, Wang L 2012 Chin. Phys. B 21 118801

    [17]

    Brand J, Zhang Z, Agarwal R K 2014 J. Power Sources 247 729

    [18]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [19]

    Shi J X, Xue X J 2011 J. Electrochem. Soc. 158 B143

    [20]

    Yann Liaw B, Nagasubramanian G, Jungst R G, Doughty D H 2004 Solid State Ionics 175 835

    [21]

    Chiang Y H, Sean W Y, Ke J C 2011 J. Power Sources 196 3921

    [22]

    Kim T, Qiao W 2011 IEEE T. Energy Conver 26 1172

    [23]

    Cho S, Jeong H, Han C, Jin S, Lim J H, Oh J 2012 Comput Chem. Eng. 41 1

    [24]

    Daniel C, Besenhard J O 2011 Handbook of Battery Materials Second Edition (Weinheim: Wiley-VCH) pp844

    [25]

    Bernardi D, Pawlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5

    [26]

    Kim U S, Shin C B, Kim C S 2009 J. Power Sources. 189 841

    [27]

    Lee J, Choi K W, Yao N P, Christianson C C 1986 J. Electrochem. Soc. 133 1286

    [28]

    Gu W B, Wang C Y 2000 J. Electrochem. Soc. 147 2910

    [29]

    Guo G F, Long B, Cheng B, Zhou S Q, Xu P, Cao B G 2010 J. Power Sources 195 2393

    [30]

    Lee K-J, Smith K, Pesaran A, Kim G-H 2013 J. Power Sources 241 20

    [31]

    Guo M, Kim G-H, White R E 2013 J. Power Sources 240 80

    [32]

    Jeon D H, Baek S M 2011 Energy Convers. Manage. 52 2973

    [33]

    Zhang X W 2011 Electrochim. Acta 56 1246

    [34]

    Newman J, Tiedemann W 1975 AIChE Journal 21 25

    [35]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [36]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [37]

    Rao L, Newman J 1997 J. Electrochem. Soc. 144 2697

    [38]

    Zhang Q, Guo Q Z, White R E 2007 J. Power Sources 165 427

    [39]

    Zhang Q, White R E 2007 J. Electrochem. Soc. 154 A587

    [40]

    Srinivasan V, Newman J 2004 J. Electrochem. Soc. 151 A1517

    [41]

    Srinivasan V, Newman J 2004 J. Electrochem. Soc. 151 A1530

    [42]

    Ye Y H, Shi Y X, Tay A A O 2012 J. Power Sources 217 509

    [43]

    Saw L H, Ye Y, Tay A A O 2013 Energy Convers. Manage 75 162

    [44]

    Safari M, Delacourt C 2011 J. Electrochem. Soc. 158 A562

    [45]

    Li J, Cheng Y, Jia M, Tang Y, Lin Y, Zhang Z, Liu Y 2014 J. Power Sources 255 130

    [46]

    Wang S R, Lu L L, Liu X J 2013 J. Power Sources 244 101

    [47]

    Chen Y F, Evans J W 1994 J. Electrochem. Soc. 141 2947

    [48]

    Li J, Cheng Y, Ai L H, Jia M, Du S L, Yin B H, Woo S, Zhang H L 2015 J. Power Sources 293 993

    [49]

    Du S L, Jia M, Cheng Y, Tang Y W, Zhang H L, Ai L H, Zhang K, Lai Y Q 2015 Int. J. Therm. Sci. 89 327

    [50]

    Tang Y W, Jia M, Cheng Y, Zhang K, Zhang H L, Li J 2013 Acta Phys. Sin. 62 158201 (in Chinese) [汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼 2013 物理学报 62 158201]

    [51]

    Bandhauer T M, Garimella S, Fuller T F 2011 J. Electrochem. Soc. 158 R1

    [52]

    Xun J Z, Liu R, Jiao K 2013 J. Power Sources 233 47

    [53]

    Xu X M, He R 2013 J. Power Sources 240 33

    [54]

    Khateeb S A, Farid M M, Selman J R, Al-Hallaj S 2004 J. Power Sources 128 292

    [55]

    Zavalis T G, Klett M, Kjell M H, Behm M, Lindström R W, Lindbergh G 2013 Electrochim. Acta 110 335

    [56]

    Bohn E, Eckl T, Kamlah M, McMeeking R 2013 J. Electrochem. Soc. 160 A1638

    [57]

    Dai Y, Cai L, White R E 2014 J. Power Sources 247 365

    [58]

    Hao F, Fang D N 2013 J. Electrochem. Soc. 160 A595

    [59]

    Song Y C, Lu B, Ji X, Zhang J Q 2012 J. Electrochem. Soc. 159 A2060

    [60]

    Schalkwijk W V, Scrosati B 2002 Advances in Lithium-Ion Batteries (New York: Kluwer Academic Publishers) pp378

    [61]

    Zhang D, Popov B N, White R E 2000 J. Electrochem. Soc. 147 831

    [62]

    Guo M, Kumaresan K, Sikha G, White R 2008 ECS Meeting Abstracts 801 39

    [63]

    Ning G, Popov B N 2004 J. Electrochem. Soc. 151 A1584

    [64]

    Ning G, White R E, Popov B N 2006 Electrochim. Acta 51 2012

    [65]

    Evans T I, White R E 1987 J. Electrochem. Soc. 134 2725

    [66]

    Santhanagopalan S, Guo Q Z, Ramadass P, White R E 2006 J. Power Sources 156 620

    [67]

    Huang L, Li Jian Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建远 2015 物理学报 64 108202]

    [68]

    Guo M, Sikha G, White R E 2011 J. Electrochem. Soc. 158 S11

    [69]

    Renganathan S, White R E 2011 J. Power Sources 196 442

    [70]

    Chung M D, Seo J H, Zhang X C, Sastry A M 2011 J. Electrochem. Soc. 158 A371

    [71]

    Yi Y B, Wang C W; Sastry A M 2006 ASME J. Eng. Mater. Techonol. 128 73

    [72]

    Wang C W, Sastry A M 2007 J. Electrochem. Soc. 154 A1035

    [73]

    Goldin G M, Colclasure A M, Wiedemann A H, Kee R 2012 J Electrochim. Acta 64 118

    [74]

    Gupta A, Seo J H, Zhang X, Du W, Sastry A M, Shyy W 2011 J. Electrochem. Soc. 158 A487

    [75]

    Garcia R E, Chiang Y M, Carter W C, Limthongkul P, Bishop C M 2005 J. Electrochem. Soc. 152 A255

    [76]

    Zeng J B, Jiang F M 2013 Acta Phys. Chim. Sin. 29 2371 (in Chinese) [曾建邦, 蒋方明 2013 物理化学学报 29 2371]

    [77]

    Smith M, García R E, Horn Q C 2009 J. Electrochem. Soc. 156 A896

    [78]

    Wargo E A, Kotaka T, Tabuchi Y, Kumbur E C 2013 J. Power Sources 241 608

    [79]

    Wilson J R, Cronin J S, Barnett S A, Harris S J 2011 J. Power Sources 196 3443

    [80]

    Stephenson D E, Walker B C, Skelton C B, Gorzkowski E P, Rowenhorst D J, Wheeler D R 2011 J. Electrochem. Soc. 158 A781

    [81]

    Ender M, Joos J, Carraro T, Ivers-Tiffée E 2012 J. Electrochem. Soc. 159 A972

    [82]

    Wu W, Jiang F M, Chen Z, Wang Y, Zhao F G, ZENG Y Q 2013 J Inorg Mater 28 1243 (in Chinese) [吴伟, 蒋方明, 陈治, 汪颖, 赵丰刚, 曾毓群 2013 无机材料学报 28 1243]

    [83]

    Wu W, Jiang F M, Zeng J B 2013 Acta Phys. Chim. Sin. 29 2361 (in Chinese) [吴伟, 蒋方明, 曾建邦 2013 物理化学学报 29 2361]

    [84]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 物理学报 63 048202]

    [85]

    Hutzenlaub T, Asthana A, Becker J, Wheeler D R, Zengerle R, Thiele S 2013 Electrochem Commun. 27 77

    [86]

    Hutzenlaub T, Thiele S, Paust N, Spotnitz R, Zengerle R, Walchshofer C 2014 Electrochim. Acta 115 131

    [87]

    Shearing P R, Howard L E, Jørgensen P S, Brandon N P, Harris S J 2010 Electrochem Commun. 12 374

    [88]

    Yan B, Lim C, Yin L L, Zhu L K 2012 J. Electrochem. Soc. 159 A1604

    [89]

    Yan B, Lim C, Yin L L, Zhu L K 2013 Electrochim. Acta 100 171

    [90]

    Tariq F, Yufit V, Kishimoto M, Shearing P R, Menkin S, Golodnitsky D, Gelb J, Peled E, Brandon N P 2014 J. Power Sources 248 1014

    [91]

    Lim C, Yan B, Yin L, Zhu L K 2012 Electrochim. Acta 75 279

    [92]

    Liu Z, Cronin J S, Chen-Wiegart Y-C K, Wilson J R, Yakal-Kremski K J, Wang J, Faber K T, Barnett S A 2013 J. Power Sources 227 267

    [93]

    Chen-Wiegart, Karen Y-c, Liu Z, Faber K T, Barnett S A, Wang J 2013 Electrochem Commun. 28 127

  • [1] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性. 物理学报, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [3] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于ADME模型的锂离子动力电池外特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211401
    [4] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [6] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [7] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [8] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [9] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [10] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [11] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [12] 李文飞, 张建, 王骏, 王炜. 生物大分子多尺度理论和计算方法. 物理学报, 2015, 64(9): 098701. doi: 10.7498/aps.64.098701
    [13] 黄亮, 李建远. 基于单粒子模型与偏微分方程的锂离子电池建模与故障监测. 物理学报, 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [14] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [15] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [16] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  6207
  • PDF下载量:  2238
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-22
  • 修回日期:  2015-09-22
  • 刊出日期:  2015-11-05

锂离子电池多尺度数值模型的应用现状及发展前景

  • 1. 中南大学冶金与环境学院, 长沙 410083;
  • 2. 湖南艾华集团股份有限公司, 益阳 413002
  • 通信作者: 贾明, jiamingsunmoon@aliyun.com
    基金项目: 国家自然科学基金(批准号: 51204211)、中南大学博士研究生自主探索创新项目(批准号: 2015zzts033)和湖南省科技计划(批准号: 2014ZK3080)资助的课题.

摘要: 锂离子电池是一种较为复杂的电化学系统, 其涵盖质量传递、电荷传递、热量传递以及多种电化学反应等物理化学过程. 其不仅物理尺度跨越大, 从微观活性颗粒、极片、电芯跨越到电池模组, 还面临着成组配对以及均衡性的问题, 这些问题加剧了电池设计和性能综合评估的难度. 通过计算机数值仿真技术, 建立数学模型, 全面和系统地捕捉电池工作过程各物理场的相互作用机理, 分析其演化规律, 能够为优化电池系统设计提供理论支撑. 本文对锂离子电池的数值模型研究进展和发展趋势进行了综述. 同时对主要理论模型进行了分类整理, 总结了它们的特点、适用范围和局限性, 指出了将来进一步研究的方向和难点所在, 这些对锂离子电池多尺度数值模型的理论研究和工程应用都具有指导性的意义.

English Abstract

参考文献 (93)

目录

    /

    返回文章
    返回