搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双模随机晶场对纳米管上Blume-Capel模型磁化强度和相变的影响

李晓杰 刘中强 王春阳 徐玉良 孔祥木

引用本文:
Citation:

双模随机晶场对纳米管上Blume-Capel模型磁化强度和相变的影响

李晓杰, 刘中强, 王春阳, 徐玉良, 孔祥木

Effects of bimodal random crystal field on the magnetization and phase transition of Blume-Capel model on nanotube

Li Xiao-Jie, Liu Zhong-Qiang, Wang Chun-Yang, Xu Yu-Liang, Kong Xiang-Mu
PDF
导出引用
  • 近年来, 磁性纳米管的物理性质和相关应用得到了人们的广泛关注. 利用有效场理论研究了纳米管上双模随机晶场中Blume-Capel模型的磁化强度和相变性质, 得到了系统的磁化强度与温度和随机晶场的关系及其相图. 结果表明: 系统在稀释晶场、交错晶场和同向晶场中会表现出不同的磁学性质和相变行为; 稀释晶场和交错晶场会抑制系统的磁化强度, 导致其基态饱和值小于1, 而同向晶场则不会; 随着随机晶场参量的变化, 系统存在多个相变温度, 并呈现出三临界现象和重入现象.
    Recently, the physical properties and applications of the magnetic nanotube have attracted a great deal of theoretical and experimental attention. The magnetization and phase transition of spin-1 Blume-Capel model on a cylindrical Ising nanotube with bimodal random crystal fields are investigated by using the effective field theory. Employing numerical calculations, we obtain the phase diagrams and the magnetization, which depend on the temperature and the parameters of random crystal fields. Our obtained results are as follows. (i) Changing the probability (p) and the ratio of the crystal fields (), the bimodal random crystal fields may describe different doped atoms acting on spins. Especially, for p = 0.5, choosing = 0,-1.0,-0.5 and 0.5, the bimodal random crystal fields can respectively degrade four typical distributions of random crystal fields, i. e., the distribution of diluted crystal fields, the distribution of symmetry staggered crystal fields, the distribution of non-symmetry staggered crystal fields, and the distribution of same-direction crystal field. (ii) The system exhibits different magnetic properties and phase transition behaviors in the diluted, staggered and same-direction crystal field. The diluted and staggered crystal fields may reduce the magnetization of the system, resulting in the ground state saturation value of magnetization, which is less than 1, while the same-direction crystal fields cannot result in a similar behavior. (iii) The system shows several phase transition temperatures, i.e., first-order and second-order phase transitions and reentrant phenomenon as the parameters of bimodal random crystal fields change. The tricritical point and reentrant phenomenon do exist for certain values of the probability, the negative crystal field and the ratio of the crystal fields in the system. The relevant experiment is needed to verify the above-mentioned theoretical results.
      通信作者: 孔祥木, kongxm@mail.qfnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11275112, 11302118)、教育部博士点专项科研基金(批准号: 20123705110004)和山东省自然科学基金(批准号: ZR2011AM018, ZR2013AQ015) 资助的课题.
      Corresponding author: Kong Xiang-Mu, kongxm@mail.qfnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundations of China (Grant Nos. 11275112, 11302118), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20123705110004), and the Natural Science Foundations of Shandong Province, China (Grant Nos. ZR2011AM018, ZR2013AQ015).
    [1]

    Blume M 1966 Phys. Rev. 141 517

    [2]

    Capel H W 1966 Physica 32 966

    [3]

    Keskin M, Canko O, Temizer 2005 Phys. Rev. E 72 036125

    [4]

    Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese) [许玲, 晏世雷 2007 物理学报 56 1691]

    [5]

    Yan S L, Zhu H X 2006 Chin. Phys. 15 3026

    [6]

    Masrour R, Bahmad L, Hamedoun M, Benyoussef A, Hlil E K 2013 Solid State Commun. 162 53

    [7]

    Albayrak E 2013 Physica A 392 552

    [8]

    Zhou D, Cai L H, Wen F S, Li F S 2007 Chinese J. Chem. Phys. 20 821

    [9]

    Davis D M, Moldovan M, Young D P 2006 Solid State Lett. 9 153

    [10]

    Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145

    [11]

    Cankoa O, Erdinç A, Taşkın F, Atişb M 2011 Phys. Lett. A 375 3547

    [12]

    Canko O, Erdinç A, Taşkın F, Yıldırım A F 2012 J. Magn. Magn. Mater. 324 508

    [13]

    Taşkin F, Canko O, Erdinç A, Yıldırım A F 2014 Physica A 407 287

    [14]

    Albayrak E 2011 Physica A 390 1529

    [15]

    Albayrak E 2013 Solid State Commun. 159 76

    [16]

    Albayrak E 2013 Chin. Phys. B 22 077501

    [17]

    Akıncı , Yksel Y, Polat H 2011 Physica A 390 541

    [18]

    Yigit A, Albayrak E 2013 J. Magn. Magn. Mater. 329 125

    [19]

    Xing L Y, Yan S L 2012 J. Magn. Magn. Mater. 324 3641

    [20]

    Magoussi H, Zaim A, Kerouad M 2013 J. Magn. Magn. Mater. 344 109

    [21]

    H Magoussi, Zaim A, Kerouad M 2013 Chin. Phys. B 22 116401

    [22]

    Kaneyoshi T, Fittipaldi I P, Honmura R, Manabe T 1981 Phys. Rev. B 24 481

    [23]

    Kaneyoshi T, Tucker J W, Jaščur M 1992 Physica A 186 495

    [24]

    Kaneyoshi T 1993 Acta Phys. Pol. A 83 703

    [25]

    Keskin M, Şarli N, Deviren B 2011 Solid State Commun. 151 1025

    [26]

    Kaneyoshi T 1991 J. Phys. Condens. Matter 3 4497

    [27]

    Kaneyoshi T, Mielnicki J 1990 J. Phys. Condens. Matter 2 8773

  • [1]

    Blume M 1966 Phys. Rev. 141 517

    [2]

    Capel H W 1966 Physica 32 966

    [3]

    Keskin M, Canko O, Temizer 2005 Phys. Rev. E 72 036125

    [4]

    Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese) [许玲, 晏世雷 2007 物理学报 56 1691]

    [5]

    Yan S L, Zhu H X 2006 Chin. Phys. 15 3026

    [6]

    Masrour R, Bahmad L, Hamedoun M, Benyoussef A, Hlil E K 2013 Solid State Commun. 162 53

    [7]

    Albayrak E 2013 Physica A 392 552

    [8]

    Zhou D, Cai L H, Wen F S, Li F S 2007 Chinese J. Chem. Phys. 20 821

    [9]

    Davis D M, Moldovan M, Young D P 2006 Solid State Lett. 9 153

    [10]

    Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145

    [11]

    Cankoa O, Erdinç A, Taşkın F, Atişb M 2011 Phys. Lett. A 375 3547

    [12]

    Canko O, Erdinç A, Taşkın F, Yıldırım A F 2012 J. Magn. Magn. Mater. 324 508

    [13]

    Taşkin F, Canko O, Erdinç A, Yıldırım A F 2014 Physica A 407 287

    [14]

    Albayrak E 2011 Physica A 390 1529

    [15]

    Albayrak E 2013 Solid State Commun. 159 76

    [16]

    Albayrak E 2013 Chin. Phys. B 22 077501

    [17]

    Akıncı , Yksel Y, Polat H 2011 Physica A 390 541

    [18]

    Yigit A, Albayrak E 2013 J. Magn. Magn. Mater. 329 125

    [19]

    Xing L Y, Yan S L 2012 J. Magn. Magn. Mater. 324 3641

    [20]

    Magoussi H, Zaim A, Kerouad M 2013 J. Magn. Magn. Mater. 344 109

    [21]

    H Magoussi, Zaim A, Kerouad M 2013 Chin. Phys. B 22 116401

    [22]

    Kaneyoshi T, Fittipaldi I P, Honmura R, Manabe T 1981 Phys. Rev. B 24 481

    [23]

    Kaneyoshi T, Tucker J W, Jaščur M 1992 Physica A 186 495

    [24]

    Kaneyoshi T 1993 Acta Phys. Pol. A 83 703

    [25]

    Keskin M, Şarli N, Deviren B 2011 Solid State Commun. 151 1025

    [26]

    Kaneyoshi T 1991 J. Phys. Condens. Matter 3 4497

    [27]

    Kaneyoshi T, Mielnicki J 1990 J. Phys. Condens. Matter 2 8773

  • [1] 韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤. 双金属/TiO2纳米管复合结构中增强的光电流. 物理学报, 2021, 70(3): 038103. doi: 10.7498/aps.70.20201134
    [2] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [3] 武小芳, 谢树果, 何云涛, 李丽, 李小路. 碳纳米管光学天线的有效波长和谐振特性. 物理学报, 2016, 65(9): 097801. doi: 10.7498/aps.65.097801
    [4] 马玉龙, 向伟, 金大志, 陈磊, 姚泽恩, 王琦龙. 碳纳米管薄膜场蒸发效应. 物理学报, 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [5] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理. 物理学报, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [6] 李银芳, 申银阳, 孔祥木. 随机外磁场对一维Blume-Capel模型动力学性质的影响. 物理学报, 2012, 61(10): 107501. doi: 10.7498/aps.61.107501
    [7] 刘贵立, 杨忠华, 方戈亮. 镁/镀镍碳纳米管界面特性电子理论研究. 物理学报, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [8] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发. 物理学报, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [9] 郭大勃, 元 光, 宋翠华, 顾长志, 王 强. 碳纳米管的变温场发射. 物理学报, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [10] 刘贵立, 郭玉福, 李荣德. ZA27/CNT界面特性电子理论研究. 物理学报, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [11] 张国英, 张 辉, 魏 丹, 何君琦. 碳纳米管增强铝基复合材料电子理论研究. 物理学报, 2007, 56(3): 1581-1584. doi: 10.7498/aps.56.1581
    [12] 周 昀, 龙云泽, 陈兆甲, 张志明, 万梅香. 水和乙醇对纳米管结构聚苯胺电阻率的影响. 物理学报, 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [13] 陆 地, 颜晓红, 丁建文. 单壁碳纳米管中电子的有效质量. 物理学报, 2004, 53(2): 527-530. doi: 10.7498/aps.53.527
    [14] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究. 物理学报, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [15] 龙云泽, 陈兆甲, 张志明, 万梅香, 郑 萍, 王楠林, 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 纳米管结构聚苯胺的电阻率和磁化率. 物理学报, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [16] 王 宇, 王秀喜, 倪向贵, 吴恒安. 单壁碳纳米管轴向压缩变形的研究. 物理学报, 2003, 52(12): 3120-3124. doi: 10.7498/aps.52.3120
    [17] 张兆祥, 侯士敏, 赵兴钰, 张浩, 孙建平, 刘惟敏, 薛增泉, 施祖进, 顾镇南. 单壁碳纳米管的场发射特性研究. 物理学报, 2002, 51(2): 434-438. doi: 10.7498/aps.51.434
    [18] 龙云泽, 郑萍, 张志明, 魏志祥, 万梅香, 陈兆甲, 王楠林. 萘磺酸掺杂对纳米管结构聚苯胺低温电阻率的影响. 物理学报, 2002, 51(9): 2090-2095. doi: 10.7498/aps.51.2090
    [19] 张国民, 杨传章. 自旋S=3/2和S=2 Blume-Capel模型相变的Monte Carlo研究. 物理学报, 1995, 44(6): 958-962. doi: 10.7498/aps.44.958
    [20] 张国民, 杨传章. 铁磁键稀疏Blume-Capel模型相图的Monte Carlo研究. 物理学报, 1993, 42(1): 128-133. doi: 10.7498/aps.42.128
计量
  • 文章访问数:  4379
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-21
  • 修回日期:  2015-09-08
  • 刊出日期:  2015-12-05

/

返回文章
返回