搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压力诱导WS2纳米管光电性能的显著提升

姜懿峰 岳磊 魏子寓 赵晓续 李全军 刘冰冰

引用本文:
Citation:

压力诱导WS2纳米管光电性能的显著提升

姜懿峰, 岳磊, 魏子寓, 赵晓续, 李全军, 刘冰冰

Pressure-Induced Significant Enhancement of photoelectronic Properties in WS2 Nanotubes

JIANG Yifeng, YUE Lei, WEI Ziyu, ZHAO Xiaoxu, LI Quanjun, LIU Bingbing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 探索功能材料光电性能优化的有效途径对于新一代光电子器件的发展至关重要。然而现有调控策略常存在工艺复杂等问题,且一维过渡金属硫族化合物( TMDs)在极端条件下的结构演化与光电性能提升的内在关系尚不明确,制约了光电性能的进一步提升。本研究通过压力调控实现了WS2纳米管( NT-WS2)光电响应特性的显著增强。在13.5 GPa压力下,器件响应度提升至43.75 A/W,较初始值提高近2个数量级,外量子效率和比探测率也分别提高约67倍和10倍。高压原位X射线衍射与拉曼光谱结果表明,NT-WS2光电性能的提升源于压力下层间作用增强导致的带隙收缩,以及纳米管致密堆积改善了载流子输运性能。本工作不仅深化了一维TMDs在极端条件下光电演化规律的理解,也为高性能纳米光电子器件的设计与优化提供了新的思路。
    Exploring effective approaches to optimize the photoelectronic properties of functional materials is crucial for advancing next-generation optoelectronic devices. However, existing modulation strategies are frequently plagued by drawbacks including complex fabrication processes. However, conventional regulation approaches often suffer from complex processing, and the intrinsic relationship between structural evolution and performance enhancement in one-dimensional transition-metal dichalcogenides (TMDs) under extreme conditions remains elusive, hindering further performance improvement. In this study, high pressure is employed as a continuously tunable and clean external field to regulate the structural and photoelectric properties of one-dimensional transition-metal dichalcogenide nanotubes (NT-WS2). Utilizing a diamond anvil cell (DAC) combined with in situ high-pressure photocurrent measurements, Raman spectroscopy, and X-ray diffraction (XRD), we systematically investigated the pressure- dependent evolution of the crystal structure and photoelectric performance.The results demonstrate a remarkable pressure-driven enhancement in the optoelectronic response of NT- WS2. With increasing pressure, the device responsivity exhibits a dramatic rise from the initial 0.53 A/W to 43.75 A/W at 13.5 GPa—nearly two orders of magnitude higher. Correspondingly, the external quantum efficiency (EQE) and specific detectivity (D*) are enhanced by approximately 67-fold and 10-fold, respectively. The synergistic in situ spectroscopic and structural analyses reveal that this pronounced improvement originates from pressure-induced bandgap narrowing due to strengthened interlayer interactions, together with improved carrier transport facilitated by the compact stacking of nanotubes. This work not only deepens the understanding of the optoelectronic evolution mechanisms of 1D TMDs under extreme conditions but also provides a novel regulatory strategy to guide the design and optimization of high-performance nano-optoelectronic devices.
  • [1]

    Tenne R, Margulis L, Genut M e, Hodes G 1992 Nature 360 444

    [2]

    Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S, Tenne R 1997 Nature 387 791

    [3]

    Kaplan-Ashiri I 2004 Mechanical Properties of Individual WS2 Nanotubes AIP Conference Proceedings 723 306

    [4]

    Wang M S, Kaplan-Ashiri I, Wei X L, Rosentsveig R, Wagner H D, Tenne R, Peng L M 2008 Nano Research 1 22

    [5]

    Pelella A, Kumar A, Intonti K, Durante O, De Stefano S, Han X, Li Z, Guo Y, Giubileo F, Camilli L, Passacantando M, Zak A, Di Bartolomeo A 2024 Small 20 2403965

    [6]

    Wang F, Wei S, Jin W, He X-L, Wang W, Wang F, Li F, Zhang X, An Q, He X, Xu J 2025 Journal of Physics D: Applied Physics 58 195103

    [7]

    WU X Q, WANG L R, YUAN Y F, MA L, GUO H Z 2023 Chinese Journal of High Pressure Physics 37 050103 (in Chinese) [吴学仟,王玲瑞,袁亦方,马良,郭海中2023 高压物理学报 37 050103]

    [8]

    Zhang Y J, Onga M, Qin F, Shi W, Zak A, Tenne R, Smet J, Iwasa Y 2018 2D Materials 5 035002

    [9]

    Faella E, Lozzi L, Camilli L, Zak A, Giubileo F, Bartolomeo A D, Passacantando M 2025 Nanotechnology 36 325501

    [10]

    Li C K, Zhu J L 2025 Acta Physica Sinica 74 176802 (in Chinese) [李辰恺, 朱金龙 2025 物理学报 74 176802]

    [11]

    Xia H, Lu Z-Y, Li T-X, Parkinson P, Liao Z-M, Liu F-H, Lu W, Hu W-D, Chen P-P, Xu H-Y 2012 Acs Nano 6 6005

    [12]

    Gao L, Wang L, Kuklin A V, Gao J, Yin S, Ågren H, Zhang H 2021 Small 17 2105683

    [13]

    Li Z, Li H, Liu N, Du M, Jin X, Li Q, Du Y, Guo L, Liu B 2021 Advanced Optical Materials 9 2101163

    [14]

    Li Z, Jia B, Fang S, Li Q, Tian F, Li H, Liu R, Liu Y, Zhang L, Liu S, Liu B 2022 Advanced Science 10 2205837

    [15]

    Li Z, Li Q, Li H, Tian F, Du M, Fang S, Liu R, Zhang L, Liu B 2022 Small Methods 6 2201044

    [16]

    Yue L, Tian F, Liu R, Li Z, Li R, Li C, Li Y, Yang D, Li X, Li Q, Zhang L, Liu B 2025 National Science Review 12 nwae419

    [17]

    Zhang X, Liu B, Liu S, Li J, Liu R, Wang P, Dong Q, Li S, Tian H, Li Q, Liu B 2021 Journal of Alloys and Compounds 867 158923

    [18]

    Chen S, Li Z, Li S, Xu K, Ma N, Yue L, Jin X, Liu R, Dong Q, Li Q, Liu B 2025 Laser & Photonics Reviews 19 2500250

    [19]

    Yan X L, Feng Z B, Yu L, Liu C L 2025 Acta Physica Sinica 74 177801 (in Chinese) [闫晓丽, 冯振豹, 于蓝, 刘才龙 2025 物理学报 74 177801]

    [20]

    Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Physical Review Letters 113 036802

    [21]

    Ma X, Fu S, Ding J, Liu M, Bian A, Hong F, Sun J, Zhang X, Yu X, He D 2021 Nano Letters 21 8035

    [22]

    Wang P, Wang Y, Qu J, Zhu Q, Yang W, Zhu J, Wang L, Zhang W, He D, Zhao Y 2018 Physical Review B 97 235202

    [23]

    Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G, Jia Q 2016 Advanced Materials 28 8663

    [24]

    Zhang J, Ji S, Ma Y, Guan R, Wu X, Qu X, Yan B, Zhang D, Zhao J, Yang J 2019 Nanoscale 11 11660

    [25]

    Guo S, Bu K, Li J, Hu Q, Luo H, He Y, Wu Y, Zhang D, Zhao Y, Yang W, Kanatzidis M G, Lü X 2021 Journal of the American Chemical Society 143 2545

    [26]

    Wu S Y, Ma S L, Zhao C Y, Li S X, Ye M Y, Qi M Y, Zhao X B, Wang L R, Cui T 2025 Acta Physica Sinica 74 178503 (in Chinese) [吴姝颖, 马帅领, 赵春燕, 李世新, 叶梅艳, 戚梦瑶, 赵行斌, 王玲瑞, 崔田 2025 物理学报 74 178503]

    [27]

    Liu T, Bu K, Zhang Q, Zhang P, Guo S, Liang J, Wang B, Zheng H, Wang Y, Yang W, Lü X 2022 Materials 15 3845

    [28]

    Zhang X, Dong Q, Li Z, Jing X, Liu R, Liu B, Zhao T, Lin T, Li Q, Liu B 2022 Materials Research Letters 10 547

    [29]

    Zak A, Sallacan-Ecker L, Margolin A, Feldman Y, Popovitz-Biro R, Albu-Yaron A, Genut M, Tenne R 2010 Fullerenes, Nanotubes and Carbon Nanostructures 19 18

    [30]

    Bandaru N, Kumar R S, Baker J, Tschauner O, Hartmann T, Zhao Y, Venkat R 2014 International Journal of Modern Physics B 28 1450168

    [31]

    Zhang Y J, Ideue T, Onga M, Qin F, Suzuki R, Zak A, Tenne R, Smet J H, Iwasa Y 2019 Nature 570 349

    [32]

    Krause M, Virsek M, Remškar M, Kolitsch A, Möller W 2009 physica status solidi (b) 246 2786

    [33]

    Staiger M, Rafailov P, Gartsman K, Telg H, Krause M, Radovsky G, Zak A, Thomsen C 2012 Physical Review B—Condensed Matter and Materials Physics 86 165423

    [34]

    Yue L, Cui D, Tian F, Liu S, Li Z, Liu R, Yao Z, Li Y, Yang D, Li X 2024 Acta Materialia 263 119529

    [35]

    Yue L, Xu D, Wei Z, Zhao T, Lin T, Tenne R, Zak A, Li Q, Liu B 2022 Materials 15 2838

    [36]

    O’Neal K R, Cherian J G, Zak A, Tenne R, Liu Z, Musfeldt J L 2016 Nano Letters 16 993

  • [1] 程龄莹, 张华芳, 毛艳丽. 高压下二维材料结构和光电性能研究进展. 物理学报, doi: 10.7498/aps.74.20251034
    [2] 闫晓丽, 冯振豹, 于蓝, 刘才龙. 高压下HfS2的光电性质. 物理学报, doi: 10.7498/aps.74.20250893
    [3] 吴姝颖, 马帅领, 赵春燕, 李世新, 叶梅艳, 戚梦瑶, 赵行斌, 王玲瑞, 崔田. 高压下非铅双钙钛矿Cs2TeCl6的光电性质调控. 物理学报, doi: 10.7498/aps.74.20250693
    [4] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究. 物理学报, doi: 10.7498/aps.74.20250042
    [5] 李临寒, 梅瑞, 刘雪璐, 林妙玲, 谭平恒. 过渡金属硫族化合物${\mathrm{A}}_1' $模所有Davydov组分的室温拉曼检测. 物理学报, doi: 10.7498/aps.74.20250960
    [6] 李辰恺, 朱金龙. 高压调控过渡金属硫族化合物及异质结构的光电性质. 物理学报, doi: 10.7498/aps.74.20250498
    [7] 宋雨心, 李玉琦, 王凌寒, 张晓兰, 王冲, 王钦生. 利用Li+插层调控WS2光电器件响应性能研究. 物理学报, doi: 10.7498/aps.72.20231000
    [8] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, doi: 10.7498/aps.72.20221656
    [9] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, doi: 10.7498/aps.71.20212276
    [10] 韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤. 双金属/TiO2纳米管复合结构中增强的光电流. 物理学报, doi: 10.7498/aps.70.20201134
    [11] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, doi: 10.7498/aps.70.20210859
    [12] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, doi: 10.7498/aps.69.20200240
    [13] 周愈之. 过渡金属硫族化合物柔性基底体系的模型与应用. 物理学报, doi: 10.7498/aps.67.20181571
    [14] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, doi: 10.7498/aps.66.039101
    [15] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, doi: 10.7498/aps.66.036102
    [16] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, doi: 10.7498/aps.61.146301
    [17] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管. 物理学报, doi: 10.7498/aps.58.529
    [18] 蔡建臻, 朱宏伟, 吴德海, 刘 峰, 吕 力. 单壁碳纳米管微分电导在高压和强磁场下的实验研究. 物理学报, doi: 10.7498/aps.55.6585
    [19] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, doi: 10.7498/aps.55.472
    [20] 王秀英, 孙力玲, 刘日平, 姚玉书, 张 君, 王文魁. 高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散. 物理学报, doi: 10.7498/aps.53.3845
计量
  • 文章访问数:  105
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-01

/

返回文章
返回