-
本研究采用直流电弧等离子体直接氮化法,成功制备了Eu2+掺杂Si3N4(Si3N4:Eu2+)纳米线,并基于其发光峰位红移、半高宽展宽及色坐标变化,开发出一种新型非接触式光学压力传感器。该纳米线在紫外光激发下呈现明亮的黄色发射,中心波长约589 nm,来源于Eu2+离子的4f65d1→4f7跃迁。通过X射线衍射、能量色散光谱、扫描/透射电子显微镜及发光光谱等系统表征,表明纳米线具备良好的结晶性与发光性能。原位高压光致发光测试显示,在0-30 GPa范围内,发射带呈现显著单调红移(dλ/dP=1.45 nm·GPa-1),发射谱带宽度同步展宽(dFWHM/dP=0.8%·GPa-1),色坐标亦呈现规律性变化(Sr(y)=0.78%·GPa-1)。以上光学参数均能与压力建立稳定对应关系,实现了高精度压力传感。该传感器具备高灵敏度、宽压力量程(可达30 GPa)及优异信号稳定性(23 GPa下仍保持38%初始发光强度),在深海探测、行星内部研究与超重型建筑监测等极端环境传感中展示出重要应用前景。In this study, single-crystal Si3N4:Eu2+ nanowires were successfully synthesized via a direct current arc plasma nitridation method. The as-synthesized product, characterized by X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy, consists of tightly packed bundles of nanowires. These nanowires have diameters ranging from tens to hundreds of nanometers and lengths up to several tens of micrometers. Under ultraviolet excitation, the nanowires display a bright yellow emission band centered at approximately 589 nm, which is assigned to the 4f65d1→4f7 transition of Eu2+ ions. The photoluminescence properties were investigated under hydrostatic pressure up to 30 GPa. As the pressure increases, the Eu2+ emission band shows a significant and monotonic red shift at a rate of approximately 1.45 nm·GPa-1. This shift is primarily attributed to pressure-induced modifications in the energy level structure, resulting from reduced interionic distances and enhanced ionic interactions. Concurrently, the full width at half maximum (FWHM) of the emission band broadens with a pressure coefficient of about 0.8% GPa-1, which can be explained by the combined effects of an enhanced crystal field, intensified electron-phonon coupling, lattice strain, and distortion. A pressure-sensing model based on chromaticity coordinate analysis was established, demonstrating high performance with a maximum sensitivity of 0.78% GPa-1. The stable correlation between these optical parameters and applied pressure enables high-precision sensing. The developed optical sensor exhibits a suite of advantageous characteristics, including high sensitivity, a broad pressure detection range (up to 30 GPa), and excellent signal stability (maintaining 38% of the initial intensity at 23 GPa). These results indicate significant application potential for Si3N4:Eu2+ nanowires in high-pressure sensing under extreme conditions, such as deep-sea exploration, studies of planetary interiors, and monitoring of ultra-heavy construction.
-
Keywords:
- Silicon Nitride /
- Photoluminescence /
- High Pressure /
- Pressure Sensing
-
[1] Steckl A J, Heikenfeld J C, Lee D S, Garter M J, Baker C C, Wang Y Q, Jones R 2002 IEEE J. Sel. Top. Quantum Electron. 8 749
[2] Riley F L 2000 J. Am. Ceram. Soc. 83 245
[3] Huang Z F, Wang Z H, Yuan H L, Zhang J W, Chen F, Shen Q, Zhang L M 2018 J. Mater. Sci. 53 13573
[4] Dorenbos P 2003 J. Lumin. 104 239
[5] Tang C M, Shen Y L, Sheng Q C, Liu S, Li W T, Wang L F, Chen D P 2013 Acta Phys. Sin. 62 247804 (in Chinese) [唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平 2013 物理学报 62 247804]
[6] Li Y Q, Hirosaki N, Xie R J, Takeda T, Mitomo M 2010 J. Lumin. 130 1147
[7] Su R, Huang Z F, Chen F, Shen Q, Zhang L M 2017 Key Eng. Mater. 727 635
[8] Xu X, Nishimura T, Huang Q, Xie R J, Hirosaki N, Tanaka H 2007 J. Am. Ceram. Soc. 90 4047
[9] Li Q, Gong C Y, Cheng X, Zhang Y 2015 Ceram. Int. 41 4227
[10] Zheng T, Luo L H, Du P, Lis S, Rodriguez-Mendoza U R, Lavin V, Martin I R, Runowski M 2022 Chem. Eng. J. 443 136414
[11] Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, Liu B B 2021 Adv. Funct. Mater. 31 2100930
[12] Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802 (in Chinese) [殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰 2025 物理学报74 067802]
[13] Feng Y J, Chen Y P, Wang L Y, Wang J X, Chang D H, Yuan Y F, Wu M, Fu R J, Zhang L L, Wang Q L, Wang K, Guo H Z, Wang L R 2024 Chin. Phys. Lett. 41 063201
[14] Ye R N, Wang J T, Yang J Y, Wang X C, Lei J C, Zhao W Y, Meng Y F, Xiao G J, Zou B 2025 Chin. Phys. B 34 066204
[15] Ding X, Tian Z F, Wang Q S, Liu C L, Cui H 2025 Acta Phys. Sin. 74 067101 (in Chinese) [丁昕,田子峰,王秋实,刘才龙,崔航 2025 物理学报74 067101]
[16] Liu H T, Huang Z H, Huang J T, Fang M H, Liu Y G, Wu X W, Hu X Z, Zhang S W 2015 Sci. Rep. 5 17250
[17] Wang Q S, Wu W Z, Wang K, Zheng H L, Zhu G, Zhang J, Cui H, Cui Q L 2020 J. Alloys Compd. 823 153804
[18] Lin L W, He Y H 2012 CrystEngComm 14 3250
[19] Wang Y C, Seto T, Ishigaki K, Uwatoko Y, Xiao G J, Zou B, Li G S, Tang Z B, Li Z B, Wang Y H 2020 Adv. Funct. Mater. 30 2001384
[20] Runowski M, Wozny P, Stopikowska N, Guo Q F, Lis S 2019 ACS Appl. Mater. Interfaces 11 4131
[21] Runowski M, Shyichuk A, Tyminski A, Grzyb T, Lavín V, Lis S 2018 ACS Appl. Mater. Interfaces 10 17269
[22] Du P, Xue J P, González A M, Luo L H, Wozny P, Rodríguez-Mendoza U R, Lavín V, Runowski M 2025 Chem. Eng. J. 505 159652
[23] Chen W, Li G H, Malm J O, Huang Y N, Wallenberg R, Han H X, Wang Z P, Bovin J O 2000 J. Lumin. 91 139
[24] Liu Z X, Pau S, Syassen K, Kuhl J, Kim W, Morkoc H, Khan M A, Sun C J 1998 Phys. Rev. B 58 6696
[25] Wisser M D, Chea M, Lin Y, Wu D M, Mao W L, Salleo A, Dionne J A 2015 Nano Lett. 15 1891
[26] Rodriguez-Mendoza U R, Cunningham G B, Shen Y R, Bray K L 2001 Phys. Rev. B 64 195112
[27] Bell P M, Mao H K, Goettel K 1984 Science 226 542
[28] Mao H K, Xu J, Bell P M 1986 J. Geophys. Res. Solid Earth 91 4673
[29] Datchi F, LeToullec R, Loubeyre P 1997 J. Appl. Phys. 81 3333
计量
- 文章访问数: 17
- PDF下载量: 0
- 被引次数: 0








下载: