搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eu2+掺杂Si3N4纳米线的高压荧光特性及其光学压力传感研究

周明晗 赵佳慧 陈双龙 王秋实 王雪娇 刘才龙

引用本文:
Citation:

Eu2+掺杂Si3N4纳米线的高压荧光特性及其光学压力传感研究

周明晗, 赵佳慧, 陈双龙, 王秋实, 王雪娇, 刘才龙

High-Pressure Luminescence Properties of Eu2+-Doped Si3N4 Nanowires and Their Application in Optical Pressure Sensing

ZHOU Ming-Han, ZHAO Jia-Hui, CHEN Shuang-Long, WANG Qiu-Shi, WANG Xue-Jiao, LIU Cai-Long
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本研究采用直流电弧等离子体直接氮化法,成功制备了Eu2+掺杂Si3N4(Si3N4:Eu2+)纳米线,并基于其发光峰位红移、半高宽展宽及色坐标变化,开发出一种新型非接触式光学压力传感器。该纳米线在紫外光激发下呈现明亮的黄色发射,中心波长约589 nm,来源于Eu2+离子的4f65d1→4f7跃迁。通过X射线衍射、能量色散光谱、扫描/透射电子显微镜及发光光谱等系统表征,表明纳米线具备良好的结晶性与发光性能。原位高压光致发光测试显示,在0-30 GPa范围内,发射带呈现显著单调红移(dλ/dP=1.45 nm·GPa-1),发射谱带宽度同步展宽(dFWHM/dP=0.8%·GPa-1),色坐标亦呈现规律性变化(Sr(y)=0.78%·GPa-1)。以上光学参数均能与压力建立稳定对应关系,实现了高精度压力传感。该传感器具备高灵敏度、宽压力量程(可达30 GPa)及优异信号稳定性(23 GPa下仍保持38%初始发光强度),在深海探测、行星内部研究与超重型建筑监测等极端环境传感中展示出重要应用前景。
    In this study, single-crystal Si3N4:Eu2+ nanowires were successfully synthesized via a direct current arc plasma nitridation method. The as-synthesized product, characterized by X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy, consists of tightly packed bundles of nanowires. These nanowires have diameters ranging from tens to hundreds of nanometers and lengths up to several tens of micrometers. Under ultraviolet excitation, the nanowires display a bright yellow emission band centered at approximately 589 nm, which is assigned to the 4f65d1→4f7 transition of Eu2+ ions. The photoluminescence properties were investigated under hydrostatic pressure up to 30 GPa. As the pressure increases, the Eu2+ emission band shows a significant and monotonic red shift at a rate of approximately 1.45 nm·GPa-1. This shift is primarily attributed to pressure-induced modifications in the energy level structure, resulting from reduced interionic distances and enhanced ionic interactions. Concurrently, the full width at half maximum (FWHM) of the emission band broadens with a pressure coefficient of about 0.8% GPa-1, which can be explained by the combined effects of an enhanced crystal field, intensified electron-phonon coupling, lattice strain, and distortion. A pressure-sensing model based on chromaticity coordinate analysis was established, demonstrating high performance with a maximum sensitivity of 0.78% GPa-1. The stable correlation between these optical parameters and applied pressure enables high-precision sensing. The developed optical sensor exhibits a suite of advantageous characteristics, including high sensitivity, a broad pressure detection range (up to 30 GPa), and excellent signal stability (maintaining 38% of the initial intensity at 23 GPa). These results indicate significant application potential for Si3N4:Eu2+ nanowires in high-pressure sensing under extreme conditions, such as deep-sea exploration, studies of planetary interiors, and monitoring of ultra-heavy construction.
  • [1]

    Steckl A J, Heikenfeld J C, Lee D S, Garter M J, Baker C C, Wang Y Q, Jones R 2002 IEEE J. Sel. Top. Quantum Electron. 8 749

    [2]

    Riley F L 2000 J. Am. Ceram. Soc. 83 245

    [3]

    Huang Z F, Wang Z H, Yuan H L, Zhang J W, Chen F, Shen Q, Zhang L M 2018 J. Mater. Sci. 53 13573

    [4]

    Dorenbos P 2003 J. Lumin. 104 239

    [5]

    Tang C M, Shen Y L, Sheng Q C, Liu S, Li W T, Wang L F, Chen D P 2013 Acta Phys. Sin. 62 247804 (in Chinese) [唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平 2013 物理学报 62 247804]

    [6]

    Li Y Q, Hirosaki N, Xie R J, Takeda T, Mitomo M 2010 J. Lumin. 130 1147

    [7]

    Su R, Huang Z F, Chen F, Shen Q, Zhang L M 2017 Key Eng. Mater. 727 635

    [8]

    Xu X, Nishimura T, Huang Q, Xie R J, Hirosaki N, Tanaka H 2007 J. Am. Ceram. Soc. 90 4047

    [9]

    Li Q, Gong C Y, Cheng X, Zhang Y 2015 Ceram. Int. 41 4227

    [10]

    Zheng T, Luo L H, Du P, Lis S, Rodriguez-Mendoza U R, Lavin V, Martin I R, Runowski M 2022 Chem. Eng. J. 443 136414

    [11]

    Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, Liu B B 2021 Adv. Funct. Mater. 31 2100930

    [12]

    Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802 (in Chinese) [殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰 2025 物理学报74 067802]

    [13]

    Feng Y J, Chen Y P, Wang L Y, Wang J X, Chang D H, Yuan Y F, Wu M, Fu R J, Zhang L L, Wang Q L, Wang K, Guo H Z, Wang L R 2024 Chin. Phys. Lett. 41 063201

    [14]

    Ye R N, Wang J T, Yang J Y, Wang X C, Lei J C, Zhao W Y, Meng Y F, Xiao G J, Zou B 2025 Chin. Phys. B 34 066204

    [15]

    Ding X, Tian Z F, Wang Q S, Liu C L, Cui H 2025 Acta Phys. Sin. 74 067101 (in Chinese) [丁昕,田子峰,王秋实,刘才龙,崔航 2025 物理学报74 067101]

    [16]

    Liu H T, Huang Z H, Huang J T, Fang M H, Liu Y G, Wu X W, Hu X Z, Zhang S W 2015 Sci. Rep. 5 17250

    [17]

    Wang Q S, Wu W Z, Wang K, Zheng H L, Zhu G, Zhang J, Cui H, Cui Q L 2020 J. Alloys Compd. 823 153804

    [18]

    Lin L W, He Y H 2012 CrystEngComm 14 3250

    [19]

    Wang Y C, Seto T, Ishigaki K, Uwatoko Y, Xiao G J, Zou B, Li G S, Tang Z B, Li Z B, Wang Y H 2020 Adv. Funct. Mater. 30 2001384

    [20]

    Runowski M, Wozny P, Stopikowska N, Guo Q F, Lis S 2019 ACS Appl. Mater. Interfaces 11 4131

    [21]

    Runowski M, Shyichuk A, Tyminski A, Grzyb T, Lavín V, Lis S 2018 ACS Appl. Mater. Interfaces 10 17269

    [22]

    Du P, Xue J P, González A M, Luo L H, Wozny P, Rodríguez-Mendoza U R, Lavín V, Runowski M 2025 Chem. Eng. J. 505 159652

    [23]

    Chen W, Li G H, Malm J O, Huang Y N, Wallenberg R, Han H X, Wang Z P, Bovin J O 2000 J. Lumin. 91 139

    [24]

    Liu Z X, Pau S, Syassen K, Kuhl J, Kim W, Morkoc H, Khan M A, Sun C J 1998 Phys. Rev. B 58 6696

    [25]

    Wisser M D, Chea M, Lin Y, Wu D M, Mao W L, Salleo A, Dionne J A 2015 Nano Lett. 15 1891

    [26]

    Rodriguez-Mendoza U R, Cunningham G B, Shen Y R, Bray K L 2001 Phys. Rev. B 64 195112

    [27]

    Bell P M, Mao H K, Goettel K 1984 Science 226 542

    [28]

    Mao H K, Xu J, Bell P M 1986 J. Geophys. Res. Solid Earth 91 4673

    [29]

    Datchi F, LeToullec R, Loubeyre P 1997 J. Appl. Phys. 81 3333

  • [1] 陈恩, 温婷, 林传龙, 王永刚. 压力调控的双态转换材料. 物理学报, doi: 10.7498/aps.75.20251336
    [2] 赵婷婷, 李梅, 彭赏, 赵博浩, 冯琦, 陈彦龙, 袁骏, 韩莹雪, 安娇, 王毫, 蒋升, 林传龙. 高压对力致发光的调控:总结与展望. 物理学报, doi: 10.7498/aps.75.20251312
    [3] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究. 物理学报, doi: 10.7498/aps.74.20250042
    [4] 吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨. 氮化铌纳米线光学特性. 物理学报, doi: 10.7498/aps.67.20181646
    [5] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, doi: 10.7498/aps.64.177804
    [6] 杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇. 氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理. 物理学报, doi: 10.7498/aps.64.238502
    [7] 白俊雪, 郭伟玲, 孙捷, 樊星, 韩禹, 孙晓, 徐儒, 雷珺. GaN基高压发光二极管理想因子与单元个数关系研究. 物理学报, doi: 10.7498/aps.64.017303
    [8] 林圳旭, 林泽文, 张毅, 宋超, 郭艳青, 王祥, 黄新堂, 黄锐. 基于纳米硅结构的氮化硅基发光器件电致发光特性研究. 物理学报, doi: 10.7498/aps.63.037801
    [9] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, doi: 10.7498/aps.62.117802
    [10] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究. 物理学报, doi: 10.7498/aps.61.126201
    [11] 黄锐, 王旦清, 宋捷, 丁宏林, 王祥, 郭艳青, 陈坤基, 徐骏, 李伟, 马忠元. 基于Si-rich SiNx/N-rich SiNy多层膜结构的量子点构筑及发光特性. 物理学报, doi: 10.7498/aps.59.5823
    [12] 王兴和, 周延怀. 掺纳米锗氧化硅的发光性能研究. 物理学报, doi: 10.7498/aps.58.4239
    [13] 黄锐, 董恒平, 王旦清, 陈坤基, 丁宏林, 徐骏, 李伟, 马忠元. 基于Si-rich SiNx/N-rich SiNy多层膜结构电致发光特性研究. 物理学报, doi: 10.7498/aps.58.2072
    [14] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, doi: 10.7498/aps.57.3661
    [15] 邹永刚, 刘冰冰, 姚明光, 侯元元, 王 霖, 于世丹, 王 鹏, 崔 田, 邹广田, B. Sundqvist, 王国瑞, 刘益春. 紫外激光和压力共同作用下C60-peapod的聚合相变研究. 物理学报, doi: 10.7498/aps.56.5172
    [16] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, doi: 10.7498/aps.56.5969
    [17] 王久敏, 陈坤基, 宋 捷, 余林蔚, 吴良才, 李 伟, 黄信凡. 氮化硅介质中双层纳米硅薄膜的两级电荷存储. 物理学报, doi: 10.7498/aps.55.6080
    [18] 袁放成, 冉广照, 陈源, 张伯蕊, 乔永平, 傅济时, 秦国刚, 马振昌, 宗婉华. 磁控溅射淀积掺Er富Si氧化硅膜中Er3+ 1.54μm光致发光. 物理学报, doi: 10.7498/aps.50.2487
    [19] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, doi: 10.7498/aps.50.1580
    [20] 梁建军, 王永谦, 陈维德, 王占国, 常 勇. 掺饵氢化非晶氧化硅1.54μm发光性质的研究. 物理学报, doi: 10.7498/aps.49.1386
计量
  • 文章访问数:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-12

/

返回文章
返回