搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低Q腔光子Faraday旋转的远程态制备

杨志刚 吴婷婷 刘金明

引用本文:
Citation:

基于低Q腔光子Faraday旋转的远程态制备

杨志刚, 吴婷婷, 刘金明

Remote state preparation via photonic Faraday rotation in low-Q cavities

Yang Zhi-Gang, Wu Ting-Ting, Liu Jin-Ming
PDF
导出引用
  • 基于低Q腔中单光子的输入与输出关系, 提出了利用偏振光Faraday旋转分别遥远制备单原子态和两原子纠缠态的可行方案. 研究结果表明, 当初始原子态的系数为实数时, 通过选择合适的偏振光、腔场与原子相互作用系统的参数, 单原子态与两原子纠缠态的远程制备均可确定性地得以实现. 与以前的原子态远程制备方案相比, 本文方案采用光子作为飞行比特来传递量子信息, 故原则上可实现原子态的真正长距离制备. 由于原子态的信息编码在耗散单边腔囚禁的型三能级原子的两个基态能级, 且原子仅虚激发, 因此本文方案对腔衰减和原子自发辐射不敏感. 此外, 本文所提出的两种方案不需要两体或多体正交测量, 仅涉及单体直积态测量, 而且两种方案都工作在低Q腔, 不需要原子与光腔的强耦合, 从而有效降低了实验难度.
    Based on the input-output relation in low-Q cavities, we propose a feasible scheme to prepare remotely a single-atom state via photonic Faraday rotation, and then the scheme is generalized to the case of remote preparation of a two-atom entangled state. Our results show that when the coefficients of the initial atomic state to be prepared are real, both remote preparation of the single-atom state and that of the two-atom entangled state can be achieved deterministically by selecting appropriate parameters of the systems for the interactions among the atom, polarized single-photon pulse, and cavity field. Compared with the existing schemes for remote preparation of atomic states, in our scheme photons are used as flying qubits to transmit quantum information, which is suitable indeed to achieve a long-distance atomic state preparation in principle. Due to the fact that the information of atomic state is encoded in two degenerate ground-state levels of a -type three-level atom confined in a unilateral dissipative cavity, and that the atoms are only virtually excited, our schemes are insensitive to both cavity decay and atomic spontaneous emission. Besides, the two schemes we proposed do not need two- or multi-particle orthogonal measurements, only product-state measurements are involved, as well as they work in low-Q regime and do not require a strong coupling condition between the atoms and the optical cavities, which greatly reduce the experimental difficulty.
      通信作者: 刘金明, jmliu@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174081, 11134003)和国家重点基础研究发展计划(批准号: 2011CB921602, 2012CB821302)资助的课题.
      Corresponding author: Liu Jin-Ming, jmliu@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174081, 11134003) and the National Basic Research Program of China (Grant Nos. 2011CB921602, 2012CB821302).
    [1]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Lo H K 2000 Phys. Rev.A 62 012313

    [3]

    Pati A K 2000 Phys. Rev. A 63 014302

    [4]

    Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M, Wootters W K 2001 Phys. Rev. Lett. 87 077902

    [5]

    Zeng B, Zhang P 2002 Phys. Rev. A 65 022316

    [6]

    Berry D W, Sanders B C 2003 Phys. Rev. Lett. 90 057901

    [7]

    Ye M Y, Zhang Y S, Guo G C 2004 Phys. Rev.A 69 022310

    [8]

    Kurucz Z, Adam P, Kis Z, Janszky J 2005 Phys. Rev. A 72 052315

    [9]

    Yu C S, Song H S, Wang Y H 2006 Phys. Rev. A 73 022340

    [10]

    Xia Y, Song J, Song H S 2007 Opt. Commun. 277 219

    [11]

    Yan F L, Zhang G H 2008 Int. J. Quantum Inf. 6 485

    [12]

    Liu J M, Feng X L, Oh C H 2009 EPL 87 30006

    [13]

    Dai H Y, Zhang M, Chen J M, Li C Z 2011 Chin. Phys. B 20 050310

    [14]

    Solis-Prosser M A, Neves L 2011 Phys. Rev.A 84 012330

    [15]

    An N B, Bich C T, Don N V 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135506

    [16]

    Chen Z F, Liu J M, Ma L 2014 Chin. Phys.B 23 020312

    [17]

    Ma S Y, Luo M X, Chen X B, Yang Y X 2014 Quantum Inf. Process 13 1951

    [18]

    Hua C Y, Chen Y X 2015 Quantum Inf. Process 14 1069

    [19]

    Peng X H, Zhu X W, Fang X M, Feng M, Liu M L, Gao K L 2003 Phys. Lett.A 306 271

    [20]

    Babichev S A, Brezger B, Lvovsky A I 2004 Phys. Rev. Lett. 92 047903

    [21]

    Rosenfeld W, Berner S, Volz J, Weber M, Weinfurter H 2007 Phys. Rev. Lett. 98 050504

    [22]

    Barreiro J T, Wei T C, Kwiat P G 2010 Phys. Rev. Lett. 105 030407

    [23]

    Wu W, Liu W T, Chen P X, Li C Z 2010 Phys. Rev.A 81 042301

    [24]

    Radmark M, Wiesniak M, Zukowski M, Bourennane M 2013 Phys. Rev. A 88 032304

    [25]

    Davidovich L, Zagury N, Brune M, Raimond J M, Haroche S 1994 Phys. Rev. A 50 895

    [26]

    Moussa M H Y 1996 Phys. Rev. A 54 4661

    [27]

    Zheng S B 2004 Phys. Rev. A 69 064302

    [28]

    Ye L, Guo G C 2004 Phys. Rev. A 70 054303

    [29]

    Cardoso W B, Avelar A T, Baseia B, de Almeida N G 2005 Phys. Rev.A 72 045802

    [30]

    Liu J M, Weng B, Xia Y 2006 J. Opt. Soc. Am. B 23 1499

    [31]

    Bose S, Knight P L, Plenio M B, Vedral V 1999 Phys. Rev. Lett. 83 5158

    [32]

    Zheng S B, Guo G C 2006 Phys. Rev.A 73 032329

    [33]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400

    [34]

    Li Y Q, Steuerman D W, Berezovsky J, Seferos D S, Bazan G C, Awschalom D D 2006 Appl. Phys. Lett. 88 193126

    [35]

    Atatre M, Dreiser J, Badolato A, Imamoglu A 2007 Nat. Phys. 3 101

    [36]

    Chen J J, An J H 2010 Int. J. Quantum Inf. 8 787

    [37]

    Chen J J, An J H, Feng M, Liu G 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095505

    [38]

    Bastos W P, Cardoso W B, Avelar A T, de Almeida N G, Baseia B 2012 Quantum Inf. Process 11 1867

    [39]

    An J H, Feng M, Oh C H 2009 Phys. Rev.A 79 032303

    [40]

    Chen Q, Feng M 2010 Phys. Rev. A 82 052329

    [41]

    Bastos W P, Cardoso W B, Avelar A T, Baseia B 2011 Quantum Inf. Process 10 395

    [42]

    Wang B, Chen Q, Yang W L, Kou S P 2012 Commun. Theor. Phys. 58 225

    [43]

    Pan G Z, Zhang G, Yuan H 2013 Int. J. Theor. Phys. 52 912

    [44]

    Peng Z H, Zou J, Liu X J, Xiao Y J, Kuang L M 2012 Phys. Rev. A 86 034305

    [45]

    Luo M X, Li H R, Wang X J 2014 Eur. Phys. J. D 68 190

    [46]

    Chen X D, Xiao S J, Gu Y J, Lin X M 2010 Acta Phys. Sin. 59 5251 (in Chinese) [陈晓东, 肖邵军, 顾永建, 林秀敏 2010 物理学报 59 5251]

    [47]

    Cheng L Y, Wang H F, Zhang S, Yeon K W 2013 Chin. Phys. B 22 050306

    [48]

    Sun Q, He J, Ye L 2014 Chin. Phys. B 23 060305

    [49]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) p121-135

    [50]

    Duan L M, Kimble H J 2004 Phys. Rev. Lett. 92 127902

    [51]

    Cao C, Wang C, He L Y, Zhang R 2013 Opt. Exp. 21 4093

    [52]

    Sheng Y B, Zhao S Y, Liu J, Zhou L 2014 Quantum Inf. Process 13 881

    [53]

    Zhang Y Q, Jin X R, Zhang S 2005 Chin. Phys. 14 1732

    [54]

    Xu X B, Liu J M 2006 Can. J. Phys. 84 1089

    [55]

    Xia Y, Song J, Song H S 2008 Inter. J. Theor. Phys. 47 3226

  • [1]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Lo H K 2000 Phys. Rev.A 62 012313

    [3]

    Pati A K 2000 Phys. Rev. A 63 014302

    [4]

    Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M, Wootters W K 2001 Phys. Rev. Lett. 87 077902

    [5]

    Zeng B, Zhang P 2002 Phys. Rev. A 65 022316

    [6]

    Berry D W, Sanders B C 2003 Phys. Rev. Lett. 90 057901

    [7]

    Ye M Y, Zhang Y S, Guo G C 2004 Phys. Rev.A 69 022310

    [8]

    Kurucz Z, Adam P, Kis Z, Janszky J 2005 Phys. Rev. A 72 052315

    [9]

    Yu C S, Song H S, Wang Y H 2006 Phys. Rev. A 73 022340

    [10]

    Xia Y, Song J, Song H S 2007 Opt. Commun. 277 219

    [11]

    Yan F L, Zhang G H 2008 Int. J. Quantum Inf. 6 485

    [12]

    Liu J M, Feng X L, Oh C H 2009 EPL 87 30006

    [13]

    Dai H Y, Zhang M, Chen J M, Li C Z 2011 Chin. Phys. B 20 050310

    [14]

    Solis-Prosser M A, Neves L 2011 Phys. Rev.A 84 012330

    [15]

    An N B, Bich C T, Don N V 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135506

    [16]

    Chen Z F, Liu J M, Ma L 2014 Chin. Phys.B 23 020312

    [17]

    Ma S Y, Luo M X, Chen X B, Yang Y X 2014 Quantum Inf. Process 13 1951

    [18]

    Hua C Y, Chen Y X 2015 Quantum Inf. Process 14 1069

    [19]

    Peng X H, Zhu X W, Fang X M, Feng M, Liu M L, Gao K L 2003 Phys. Lett.A 306 271

    [20]

    Babichev S A, Brezger B, Lvovsky A I 2004 Phys. Rev. Lett. 92 047903

    [21]

    Rosenfeld W, Berner S, Volz J, Weber M, Weinfurter H 2007 Phys. Rev. Lett. 98 050504

    [22]

    Barreiro J T, Wei T C, Kwiat P G 2010 Phys. Rev. Lett. 105 030407

    [23]

    Wu W, Liu W T, Chen P X, Li C Z 2010 Phys. Rev.A 81 042301

    [24]

    Radmark M, Wiesniak M, Zukowski M, Bourennane M 2013 Phys. Rev. A 88 032304

    [25]

    Davidovich L, Zagury N, Brune M, Raimond J M, Haroche S 1994 Phys. Rev. A 50 895

    [26]

    Moussa M H Y 1996 Phys. Rev. A 54 4661

    [27]

    Zheng S B 2004 Phys. Rev. A 69 064302

    [28]

    Ye L, Guo G C 2004 Phys. Rev. A 70 054303

    [29]

    Cardoso W B, Avelar A T, Baseia B, de Almeida N G 2005 Phys. Rev.A 72 045802

    [30]

    Liu J M, Weng B, Xia Y 2006 J. Opt. Soc. Am. B 23 1499

    [31]

    Bose S, Knight P L, Plenio M B, Vedral V 1999 Phys. Rev. Lett. 83 5158

    [32]

    Zheng S B, Guo G C 2006 Phys. Rev.A 73 032329

    [33]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400

    [34]

    Li Y Q, Steuerman D W, Berezovsky J, Seferos D S, Bazan G C, Awschalom D D 2006 Appl. Phys. Lett. 88 193126

    [35]

    Atatre M, Dreiser J, Badolato A, Imamoglu A 2007 Nat. Phys. 3 101

    [36]

    Chen J J, An J H 2010 Int. J. Quantum Inf. 8 787

    [37]

    Chen J J, An J H, Feng M, Liu G 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095505

    [38]

    Bastos W P, Cardoso W B, Avelar A T, de Almeida N G, Baseia B 2012 Quantum Inf. Process 11 1867

    [39]

    An J H, Feng M, Oh C H 2009 Phys. Rev.A 79 032303

    [40]

    Chen Q, Feng M 2010 Phys. Rev. A 82 052329

    [41]

    Bastos W P, Cardoso W B, Avelar A T, Baseia B 2011 Quantum Inf. Process 10 395

    [42]

    Wang B, Chen Q, Yang W L, Kou S P 2012 Commun. Theor. Phys. 58 225

    [43]

    Pan G Z, Zhang G, Yuan H 2013 Int. J. Theor. Phys. 52 912

    [44]

    Peng Z H, Zou J, Liu X J, Xiao Y J, Kuang L M 2012 Phys. Rev. A 86 034305

    [45]

    Luo M X, Li H R, Wang X J 2014 Eur. Phys. J. D 68 190

    [46]

    Chen X D, Xiao S J, Gu Y J, Lin X M 2010 Acta Phys. Sin. 59 5251 (in Chinese) [陈晓东, 肖邵军, 顾永建, 林秀敏 2010 物理学报 59 5251]

    [47]

    Cheng L Y, Wang H F, Zhang S, Yeon K W 2013 Chin. Phys. B 22 050306

    [48]

    Sun Q, He J, Ye L 2014 Chin. Phys. B 23 060305

    [49]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) p121-135

    [50]

    Duan L M, Kimble H J 2004 Phys. Rev. Lett. 92 127902

    [51]

    Cao C, Wang C, He L Y, Zhang R 2013 Opt. Exp. 21 4093

    [52]

    Sheng Y B, Zhao S Y, Liu J, Zhou L 2014 Quantum Inf. Process 13 881

    [53]

    Zhang Y Q, Jin X R, Zhang S 2005 Chin. Phys. 14 1732

    [54]

    Xu X B, Liu J M 2006 Can. J. Phys. 84 1089

    [55]

    Xia Y, Song J, Song H S 2008 Inter. J. Theor. Phys. 47 3226

  • [1] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络. 物理学报, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [2] 罗均文, 吴德伟, 苗强, 魏天丽. 腔光力系统制备微波非经典态研究进展. 物理学报, 2020, 69(5): 054203. doi: 10.7498/aps.69.20191735
    [3] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [4] 丁东, 何英秋, 闫凤利, 高亭. 六光子超纠缠态制备方案. 物理学报, 2015, 64(16): 160301. doi: 10.7498/aps.64.160301
    [5] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态. 物理学报, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [6] 周长柱, 王晨, 李志远. 硅基二维平板光子晶体高Q微腔的制作和光谱测量. 物理学报, 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [7] 潘伟, 余和军, 张晓光, 席丽霞. 高Q值二维光子晶体缺三腔的数值模拟与分析. 物理学报, 2012, 61(3): 034209. doi: 10.7498/aps.61.034209
    [8] 冯琛, 冯国英, 陈念江, 周寿桓. 基于宽度抛物线型和渐变孔径的超高Q低V 一维光子晶体纳米梁腔的设计. 物理学报, 2012, 61(13): 134209. doi: 10.7498/aps.61.134209
    [9] 郭振, 闫连山, 潘炜, 罗斌, 徐明峰. 量子纠缠消相干对确定型远程制备的影响. 物理学报, 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [10] 陈晓东, 肖邵军, 顾永建, 林秀敏. 基于法拉第旋转构造光子Bell态分析器和GHZ态分析器. 物理学报, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [11] 江斌, 刘安金, 陈微, 邢名欣, 周文君, 郑婉华. 立体耦合光子晶体薄板微腔的高Q值特性研究. 物理学报, 2010, 59(12): 8548-8553. doi: 10.7498/aps.59.8548
    [12] 王郁武, 詹佑邦. 零知识证明的量子身份认证协议. 物理学报, 2009, 58(11): 7668-7671. doi: 10.7498/aps.58.7668
    [13] 梁华秋, 刘金明. 噪声环境下基于两体纠缠态的远程态制备. 物理学报, 2009, 58(6): 3692-3698. doi: 10.7498/aps.58.3692
    [14] 陶 原, 潘 炜, 罗 斌. 一种低经典通信消耗的量子远程态制备方案. 物理学报, 2008, 57(4): 2016-2020. doi: 10.7498/aps.57.2016
    [15] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [16] 史庆藩, 郑俊娟, 王 琪. 微波谐振腔Q值对磁激子振幅不稳定态阈值的影响. 物理学报, 2004, 53(10): 3535-3539. doi: 10.7498/aps.53.3535
    [17] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [18] 宋克慧. 利用原子腔场的Raman相互作用制备多种形式的原子纠缠态. 物理学报, 2000, 49(3): 441-444. doi: 10.7498/aps.49.441
    [19] 李高翔, 彭金生. 高Q Kerr介质腔中非简并双光子Jaynes-Cummings模型中光场的性质. 物理学报, 1993, 42(9): 1443-1451. doi: 10.7498/aps.42.1443
    [20] 刘正东. 光学腔内光子数态的形成与条件. 物理学报, 1991, 40(2): 210-218. doi: 10.7498/aps.40.210
计量
  • 文章访问数:  4294
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-03
  • 修回日期:  2015-10-19
  • 刊出日期:  2016-01-20

/

返回文章
返回