搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

He,Au离子辐照AuCu3致元素表面偏析

法涛 陈田祥 韩录会 莫川

引用本文:
Citation:

He,Au离子辐照AuCu3致元素表面偏析

法涛, 陈田祥, 韩录会, 莫川

Surface segregation of AuCu3 by He+ and Au+ irradiation

Fa Tao, Chen Tian-Xiang, Han Lu-Hui, Mo Chuan
PDF
导出引用
  • 采用磁控溅射方法在单晶硅(111)衬底上制备了AuCu3薄膜, 用2 MeV He离子和1 MeV Au离子对薄膜进行辐照, 用卢瑟福背散射对He, Au离子辐照前后AuCu3薄膜近表面的成分变化进行了分析, 对不同离子辐照导致的表面元素偏析行为进行了研究. 结果表明: 当2 MeV He离子辐照时, 随着辐照剂量增大, 观察到样品近表面Au元素偏析的趋势; 当1 MeV Au离子辐照时, 随着辐照剂量增大, 观察到样品近表面Cu元素偏析的趋势, 与He离子辐照相反. 通过对He, Au离子在样品中产生的靶原子空位及其分布分析, 发现靶原子空位浓度分布的梯度是导致两种不同表面元素偏析趋势的原因, 空位扩散是其中的主要机理.
    Surface segregation is a significant phenomenon due to its influence on many surface processes, such as corrosion, oxidation and catalysis. Defects and vacancies produced by ion irradiation in alloys used in reactors or other radiation environments may also induce surface segregation. In this work, we deposit AuCu3 film on a Si(111) substrate by magnetic sputtering. He+ and Au+ produced by pelletron are used to simulate radiation fields in reactors, and surface segregation induced by ion irradiation is investigated. SRIM software is used to simulate ion range and displacements produced in sample. Rutherford backscattering spectrometry is used to determine concentration changes near the surface of sample before and after irradiation. The results show that two kinds of ion irradiations lead to different surface segregation trends. When irradiated by 2 MeV He+, Au elements are segregated at the surface of sample. Oppositely, when irradiated by 1 MeV Au+, Cu elements are observed at the surface of sample. After analysis and discussion, we consider that this phenomenon is induced by different vacancy distributions by He+ and Au+ irradiation. 2 MeV He+ produced Au and Cu vacancies are distributed in whole film from surface to substrate smoothly, except very near the surface the concentration of vacancies has an obvious reduction. As a result, a gradient of the vacancy concentration is formed between the surface and the interior of the film. As the concentration of vacancies on the surface is lower than in interior, it would lead to vacancy diffusion from interior to surface, equivalent to diffusions of Cu and Au atoms along the opposite directions. Because of lighter atomic mass, Cu atom has a faster diffusion rate than Au atom. As a result, the concentration of Au atoms near the surface increases. Unlike He+, Au+ produces a mass of vacancies near the surface of the film, consistent with the Bragg peak by energy deposition of Au+, but decreases rapidly inside the film. It leads to a gradient of the vacancy concentration from surface to interior of the film. When vacancies diffuse from surface to interior, Cu and Au atoms diffuse from interior to surface, the lighter Cu atom concentration increases faster than Au atom concentration. Our research results explain the different segregation trends by light ion with higher energy and heavy ion with lower energy. It may help to understand the surface segregation of alloys used in complex irradiation field.
      通信作者: 法涛, tao_fa@qq.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11205135)、中国工程物理研究院科学发展基金(批准号: 2012B0301045)和国家高技术研究发展计划(批准号: 2013AA8041073)资助的课题.
      Corresponding author: Fa Tao, tao_fa@qq.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11205135), the Science and Technology Development Fund of the China Academy of Engineering Physics (Grant No. 2012B0301045) and the National High Technology Research and Development Program of China (Grant No. 2013AA8041073).
    [1]

    Burton J J, Hyman E, Fedak D G 1975 J. Catal. 37 106

    [2]

    Lea C, Seah M P 1975 Surf. Sci. 53 272

    [3]

    Abraham F F, Brundle C R 1981 J. Vacuum Sci. Technol. 18 506

    [4]

    Chelikowsky J R 1984 Surf. Sci. Lett. 139 L197

    [5]

    Good B, H G, Bozzolo, Abel P B 2000 Surf. Sci. 454 602

    [6]

    Wang B, Zhang J M, Liu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta Phys. Sin. 60 016601 (in Chinese) [张建民, 王博, 甘秀英, 殷保祥, 路彦冬, 徐可为 2011 物理学报 60 016601]

    [7]

    Wang D, Gao N, Gao Fei, Wang Z G 2014 Chin. Phys. Lett. 31 096801

    [8]

    Busby J T, Was G S, Kenik E A 2002 J. Nucl. Mater. 302 20

    [9]

    Fukuya K, Nakano M, Fujii K, Torimaru T 2004 J. Nucl. Sci. Technol. 41 594

    [10]

    Allen T R, Cole J I, Gan J, Was G S, Dropek R, Kenik E A 2005 J. Nucl. Mater. 342 90

    [11]

    Volker E, Williams F J, Calvo E J, Jacob T, Schiffrin D J 2012 Phys. Chem. Chem. Phys. 14 7448

    [12]

    Adams R D 2000 J. Organometal. Chem. 600 1

    [13]

    Datta A, Duan Z, Wang G 2012 Computat. Mater. Sci. 55 81

    [14]

    Vker E, Williams F J, Jacob T, Schiffrin D J 2014 J. Alloys Comp. 586 475

    [15]

    Burton J J, Helms C R, Polizzotti R S 1976 J. Chem. Phys. 65 1089

    [16]

    Kailas L, Audinot J N, Migeon H N, Bertrand P 2006 Composite Interfaces 4 423

    [17]

    Foiles S M 1985 Phys. Rev. B: Condens. Matter 32 7685

    [18]

    Zhang B, Taglauer E, Shu X, Hu W, Deng H 2005 Phys. Status Solidi Appl. Mater. 202 2686

    [19]

    Soisson F 2006 J. Nucl. Mater. 349 235

    [20]

    Evteev A V, Levchenko E V, Belova I V, Murch G E 2012 Phys. Metals Metallogr. 113 1202

    [21]

    Tsai W F, Liang J H, Kai J J 2005 Nucl. Instrum. Methods in Phys. Res. Section B: Beam Interactions with Materials and Atoms 241 573

    [22]

    Sorokin M V, Ryazanov A I 2006 J. Nucl. Mater. 357 82

    [23]

    Hackett M J, Busby J T, Miller M K, Was G S 2009 J. Nucl. Mater. 389 265

    [24]

    Hackett M J, Najafabadi R, Was G S 2009 J. Nucl. Mater. 389 279

    [25]

    Gupta G, Jiao Z, Ham A N, Busby J T, Was G S 2006 J. Nucl. Mater. 351 162

    [26]

    Lu Z, Faulkner R G, Sakaguchi N, Kinoshita H, Takahashi H, Flewitt P E J 2006 J. Nucl. Mater. 351 155

    [27]

    Hackett M J, Busby J T, Was G S 2008 Metall. Mater. Trans. a: Phys. Metall. Mater. Sci. 39A 218

    [28]

    Wharry J P, Jiao Z, Shankar V, Busby J T, Was G S 2011 J. Nucl. Mater. 417 140

    [29]

    Giacobbe M J, Rehn L E, Lam N Q, Okamoto P R, Funk L, Baldo P, McCormick A, Stubbins J F 1997 Atomistic Mechanisms in Beam Synthesis and Irradiation of Materials

    [30]

    Wang L M, Wang S X, Ewing R C, Meldrum A, Birtcher R C, Provencio P N, Weber W J, Matzke H 2000 Mater. Sci. Eng. a: Struct. Mater. Propert. Microstruct. Process. 286 72

    [31]

    Jiao Z, Was G S 2011 Acta Mater. 59 1220

    [32]

    Watanabe K, Hashiba M, Yamashina T 1977 Surf. Sci. 69 721

    [33]

    Wandelt K, Brundle C R 1981 Phys. Rev. Lett. 46

    [34]

    Ziegler J F 1985 The Stopping and Range of Ions in Matter (Pergamon: Pergamon Press)

  • [1]

    Burton J J, Hyman E, Fedak D G 1975 J. Catal. 37 106

    [2]

    Lea C, Seah M P 1975 Surf. Sci. 53 272

    [3]

    Abraham F F, Brundle C R 1981 J. Vacuum Sci. Technol. 18 506

    [4]

    Chelikowsky J R 1984 Surf. Sci. Lett. 139 L197

    [5]

    Good B, H G, Bozzolo, Abel P B 2000 Surf. Sci. 454 602

    [6]

    Wang B, Zhang J M, Liu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta Phys. Sin. 60 016601 (in Chinese) [张建民, 王博, 甘秀英, 殷保祥, 路彦冬, 徐可为 2011 物理学报 60 016601]

    [7]

    Wang D, Gao N, Gao Fei, Wang Z G 2014 Chin. Phys. Lett. 31 096801

    [8]

    Busby J T, Was G S, Kenik E A 2002 J. Nucl. Mater. 302 20

    [9]

    Fukuya K, Nakano M, Fujii K, Torimaru T 2004 J. Nucl. Sci. Technol. 41 594

    [10]

    Allen T R, Cole J I, Gan J, Was G S, Dropek R, Kenik E A 2005 J. Nucl. Mater. 342 90

    [11]

    Volker E, Williams F J, Calvo E J, Jacob T, Schiffrin D J 2012 Phys. Chem. Chem. Phys. 14 7448

    [12]

    Adams R D 2000 J. Organometal. Chem. 600 1

    [13]

    Datta A, Duan Z, Wang G 2012 Computat. Mater. Sci. 55 81

    [14]

    Vker E, Williams F J, Jacob T, Schiffrin D J 2014 J. Alloys Comp. 586 475

    [15]

    Burton J J, Helms C R, Polizzotti R S 1976 J. Chem. Phys. 65 1089

    [16]

    Kailas L, Audinot J N, Migeon H N, Bertrand P 2006 Composite Interfaces 4 423

    [17]

    Foiles S M 1985 Phys. Rev. B: Condens. Matter 32 7685

    [18]

    Zhang B, Taglauer E, Shu X, Hu W, Deng H 2005 Phys. Status Solidi Appl. Mater. 202 2686

    [19]

    Soisson F 2006 J. Nucl. Mater. 349 235

    [20]

    Evteev A V, Levchenko E V, Belova I V, Murch G E 2012 Phys. Metals Metallogr. 113 1202

    [21]

    Tsai W F, Liang J H, Kai J J 2005 Nucl. Instrum. Methods in Phys. Res. Section B: Beam Interactions with Materials and Atoms 241 573

    [22]

    Sorokin M V, Ryazanov A I 2006 J. Nucl. Mater. 357 82

    [23]

    Hackett M J, Busby J T, Miller M K, Was G S 2009 J. Nucl. Mater. 389 265

    [24]

    Hackett M J, Najafabadi R, Was G S 2009 J. Nucl. Mater. 389 279

    [25]

    Gupta G, Jiao Z, Ham A N, Busby J T, Was G S 2006 J. Nucl. Mater. 351 162

    [26]

    Lu Z, Faulkner R G, Sakaguchi N, Kinoshita H, Takahashi H, Flewitt P E J 2006 J. Nucl. Mater. 351 155

    [27]

    Hackett M J, Busby J T, Was G S 2008 Metall. Mater. Trans. a: Phys. Metall. Mater. Sci. 39A 218

    [28]

    Wharry J P, Jiao Z, Shankar V, Busby J T, Was G S 2011 J. Nucl. Mater. 417 140

    [29]

    Giacobbe M J, Rehn L E, Lam N Q, Okamoto P R, Funk L, Baldo P, McCormick A, Stubbins J F 1997 Atomistic Mechanisms in Beam Synthesis and Irradiation of Materials

    [30]

    Wang L M, Wang S X, Ewing R C, Meldrum A, Birtcher R C, Provencio P N, Weber W J, Matzke H 2000 Mater. Sci. Eng. a: Struct. Mater. Propert. Microstruct. Process. 286 72

    [31]

    Jiao Z, Was G S 2011 Acta Mater. 59 1220

    [32]

    Watanabe K, Hashiba M, Yamashina T 1977 Surf. Sci. 69 721

    [33]

    Wandelt K, Brundle C R 1981 Phys. Rev. Lett. 46

    [34]

    Ziegler J F 1985 The Stopping and Range of Ions in Matter (Pergamon: Pergamon Press)

  • [1] 郭玺, 左亚路, 崔宝山, 申铁龙, 盛彦斌, 席力. 离子辐照对材料磁性的调控及其应用. 物理学报, 2024, 73(13): 136101. doi: 10.7498/aps.73.20240541
    [2] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析. 物理学报, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [3] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化. 物理学报, 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [6] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] 邓永和, 张宇文, 谭恒博, 文大东, 高明, 吴安如. NiCu双金属纳米粒子的表面偏析、结构特征与扩散. 物理学报, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [8] 李明阳, 张雷敏, 吕沙沙, 李正操. 离子辐照和氧化对IG-110核级石墨中的点缺陷的影响. 物理学报, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [9] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [10] 丁斌峰, 相凤华, 王立明, 王洪涛. He+辐照对Ga0.94Mn0.06As薄膜铁磁性的改善. 物理学报, 2012, 61(4): 046105. doi: 10.7498/aps.61.046105
    [11] 王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为. fcc金属表面能的各向异性分析及表面偏析的预测. 物理学报, 2011, 60(1): 016601. doi: 10.7498/aps.60.016601
    [12] 刘建才, 张新明, 陈明安, 唐建国, 刘胜胆. In在Al(001)表面偏析的模拟. 物理学报, 2010, 59(8): 5641-5645. doi: 10.7498/aps.59.5641
    [13] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [14] 张 辉, 张国英, 何君琦, 王 丹, 杨 爽. 杂质对吸附系统O/RhxPt1-x衬底合金(110)表面偏析的影响. 物理学报, 2008, 57(3): 1846-1850. doi: 10.7498/aps.57.1846
    [15] 王震遐, 潘强岩, 胡建刚, 勇振中, 吴永庆, 朱志远. 双离子(40Ar+, C2H+6)辐照合成金刚石纳米晶颗粒. 物理学报, 2007, 56(8): 4829-4833. doi: 10.7498/aps.56.4829
    [16] 覃怀莉, 薛建明, 赖江南, 王建勇, 苗 琦, 张伟明, 马 磊, 颜 莎, 赵渭江, 顾红雅, 王宇钢. 拟南芥胚的不同区域对MeV离子辐照的响应. 物理学报, 2006, 55(11): 5991-5995. doi: 10.7498/aps.55.5991
    [17] 孙友梅, 朱智勇, 王志光, 刘 杰, 张崇宏, 金运范. 热峰模型在聚碳酸酯非晶化潜径迹中的应用. 物理学报, 2005, 54(4): 1707-1710. doi: 10.7498/aps.54.1707
    [18] 孙友梅, 刘 杰, 张崇宏, 王志光, 金运范, 段敬来, 宋 银. 快重离子辐照聚酰亚胺潜径迹的电子能损效应. 物理学报, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [19] 张 辉, 张国英, 王瑞丹, 周永军, 李 星. 无序二元合金(NixCu1-x)不同解理面上O吸附对Cu偏析的影响. 物理学报, 2005, 54(11): 5356-5361. doi: 10.7498/aps.54.5356
    [20] 张 辉, 张国英, 李 星, 刘士阳. 无序二元合金(NixCu1-x)表面CO吸附及对表面偏析的影响. 物理学报, 2004, 53(9): 3152-3156. doi: 10.7498/aps.53.3152
计量
  • 文章访问数:  5551
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-22
  • 修回日期:  2015-11-14
  • 刊出日期:  2016-02-05

/

返回文章
返回