搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒瞬态反射/透射技术的纳米Au半透膜热效应研究

吴文智 高来勖 孔德贵 高扬 冉玲苓 柴志军

引用本文:
Citation:

基于飞秒瞬态反射/透射技术的纳米Au半透膜热效应研究

吴文智, 高来勖, 孔德贵, 高扬, 冉玲苓, 柴志军

Thermal effect of translucent gold nanofilm based on transient reflection/transmission technique

Wu Wen-Zhi, Gao Lai-Xu, Kong De-Gui, Gao Yang, Ran Ling-Ling, Chai Zhi-Jun
PDF
导出引用
  • 以飞秒激光放大器作为光源联合使用瞬态反射/透射实验技术研究了纳米Au半透明纳米薄膜中非平衡载能粒子的热传导过程. 在相同实验条件下, 发现该薄膜的瞬态透射和反射信号明显不同并且延迟时间在5.07.5 ps时瞬态透射信号的符号发生改变. 对纳米薄膜的透射和反射信号进行了对比分析, 分别使用双温模型和Crude近似进行数据模拟并拟合, 分析认为沿膜厚方向的温度梯度变化和界面热阻效应引起介电函数的变化不同, 从而引起了瞬态透射信号和反射信号的不同. 对于半透明金属纳米薄膜需要同时考虑其瞬态透射和反射影响才能得到准确的瞬态吸收结果. 随着抽运脉冲能量的增加, 可以看到上升时间约为1.0 ps, 电子-晶格弛豫时间增加.
    In this work, the relaxation dynamics of optically excited electrons and lattice in translucent gold nanofilms is measured with femtosecond transient reflection and transmission technique. In order to investigate the mechanisms of heat transfer in metal nanofilm theoretically, the two-temperature model and the Crude-model approximation are used to estimate the profile of decays and the temperature of electrons and lattice. Ultrafast relaxation dynamics of gold nanofilm 60 nm in thickness is different obviously in transient reflection and transmission measurements. Electron-lattice coupling effect in the transmission method is stronger and more sensitive than that in the reflection method under the same experimental conditions. Gradient change of temperature along the direction of film thickness and interface thermal resistance due to the boundary scattering should be responsible for the difference between them. Experimental data suggest that both transient reflection and transient transmission of translucent films should be considered together in the investigation on the mechanism of heat transfer. With increasing energy of pump laser pulse, the rise time is about 1.0 ps, and the electron-lattice relaxation time becomes longer.
      通信作者: 吴文智, wuwenzhi@hlju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61204007)、黑龙江省新世纪优秀人才支持计划(批准号: 1254-NCET-018)、黑龙江省青年学术骨干支持计划(批准号: 1252G047)、黑龙江省博士后启动基金(批准号: LBH-Q14139)和黑龙江大学杰出青年基金(批准号: JCL201205, QL201211) 资助的课题.
      Corresponding author: Wu Wen-Zhi, wuwenzhi@hlju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204007), the New-Century Training Programme Foundation for the Talents by Heilongjiang Province, China (Grant No. 1254-NCET-018), the Foundation for University Key Teacher by Heilongjiang University, China (Grant No. 1252G047), the Heilongjiang Province Postdoctoral Science Foundation, China (Grant No. LBH-Q14139), and the Science Fund of Heilongjiang University for Young Scholars, China (Grant Nos. JCL201205, QL201211).
    [1]

    Zhang C W, Bi K D, Wang J L, Ni Z H, Chen Y F 2012 Sci. China Tech. Sci. 55 1044 (in Chinese) [张春伟, 毕可东, 王建立, 倪中华, 陈云飞 2012 中国科学:技术科学 55 1044]

    [2]

    SmithA N, HostetlerJ L, Norris P M 1999 Numerical Heat Transfer Part A 35 859

    [3]

    Nielsen J B, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447

    [4]

    Du G Q, Yang Q, Chen F, Ou Y, Wu Y M, Hou X 2015 Int. J. Thermal Sci. 90 197

    [5]

    Li Q, Lao H Y, Lin J, Chen Y P, Chen X F 2011 Appl. Phys. A 105 125

    [6]

    Du G Q, Yang Q, Chen F, Ou Y, Wu Y M, Lu Y, Bian H, Hou X 2014 Chem. Phys. Lett. 597 153

    [7]

    Chen J, Chen W K, Tang J, Rentzepis P M 2011 Proc. Nat. Acad. Sci. USA 108 18887

    [8]

    Rotenberg N, Bristow A D, Pfeiffer M, Betz M, van Driel H M 2007 Phys. Rev. B 75 155426

    [9]

    Guo L, Hodson S L, Fisher T S, Xu X F 2012 J. Heat Transfer 134 042402

    [10]

    Wang B L,Wang R, Liu R J, Lu X H, Zhao J M, Li Z Y 2013 Sci. Rep. 3 2358

    [11]

    Venkatakrishnan K, Tan B, Ngoi B K A 2002 Opt. Laser Technol. 34 199

    [12]

    Wang H D, Ma W G, Zhang X, Wang W 2010 Acta Phys. Sin. 59 3856 (in Chinese) [王海东, 马维刚, 张兴, 王玮 2010 物理学报 59 3856]

    [13]

    Zhu L D, Sun F Y, Zhu J, Tang D W 2012 Acta Phys. Sin. 61 130512 (in Chinese) [朱丽丹, 孙方远, 祝捷, 唐大伟 2012 物理学报 61 130512]

    [14]

    Anisimov S, Kapeliovich B, Perelman T 1974 Soviet Phys. JETP 39 375

    [15]

    Elsayed-Ali H E, Norris T B, Pessot M A, MourouG A 1987 Phys. Rev. Lett. 58 1212

    [16]

    Fang R R, Wei H, Li Z H, Zhang D M 2012 Solid State Commun. 152 108

    [17]

    Li S Q, Ye H A, Liu C Y, Dou Y F, Huang Y 2013 Chin. Phys. B 22 077302

    [18]

    Hohlfeld J, Wellershoff S S, Gudde J, Conrad U, Jahnke V, Matthias E 2000 Chem. Phys. 251 237

    [19]

    Hopkins P E, Kassebaum J L, Norris P M 2009 J. Appl. Phys. 105 023710

    [20]

    Jesus G M, Michael P H, Stephen R M 2008 Surf. Sci. 602 3125

    [21]

    Bonn M, Denzler D N, Funk S, Wolf M, Wellershoff S S, Hohlfeld J 2000 Phys. Rev. B 61 1101

    [22]

    Hostetler J L, Smith A N, Czajkowsky D M, Norris P M 1999 Appl. Opt. 38 3614

    [23]

    Guo L, Xu X F 2014 J. Heat Transfer 136 122401

    [24]

    Carpene E 2006 Phys. Rev. B 74 024301

    [25]

    Lioudakis E, Othonos A, Dimakis E, Iliopoulos E, Georgakilas A 2006 Appl. Phys. Lett. 88 121128

    [26]

    Schoenlein R W, Lin W Z, Fujimoto J G, Eesley G L 1987 Phys. Rev. Lett. 58 1680

    [27]

    Garduno-Mejia J, Higlett M P, Meech S R 2007 Chem. Phys. 341 276

    [28]

    Conforti M, Valle G D 2012 Phys. Rev. B 85 245423

    [29]

    Sun C K, Vallee F, Acioli L H, Ippen E P, Fujimoto J G 1994 Phys. Rev. B 50 15337

    [30]

    Sun C K, Vallee F, Acioli L, Ippen E P, Fujimoto J G 1993 Phys. Rev. B 48 12365

    [31]

    Hopkins P E, Norris P M 2007 Appl. Surf. Sci. 253 6289

    [32]

    Yang Q, Du G Q, Chen F, Wu Y M, Si J H, Hou X 2014 Chin. J. Lasers 41 502005 (in Chinese) [杨青, 杜广庆, 陈烽, 吴艳敏, 司金海, 侯洵2014 中国激光 41 502005]

  • [1]

    Zhang C W, Bi K D, Wang J L, Ni Z H, Chen Y F 2012 Sci. China Tech. Sci. 55 1044 (in Chinese) [张春伟, 毕可东, 王建立, 倪中华, 陈云飞 2012 中国科学:技术科学 55 1044]

    [2]

    SmithA N, HostetlerJ L, Norris P M 1999 Numerical Heat Transfer Part A 35 859

    [3]

    Nielsen J B, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447

    [4]

    Du G Q, Yang Q, Chen F, Ou Y, Wu Y M, Hou X 2015 Int. J. Thermal Sci. 90 197

    [5]

    Li Q, Lao H Y, Lin J, Chen Y P, Chen X F 2011 Appl. Phys. A 105 125

    [6]

    Du G Q, Yang Q, Chen F, Ou Y, Wu Y M, Lu Y, Bian H, Hou X 2014 Chem. Phys. Lett. 597 153

    [7]

    Chen J, Chen W K, Tang J, Rentzepis P M 2011 Proc. Nat. Acad. Sci. USA 108 18887

    [8]

    Rotenberg N, Bristow A D, Pfeiffer M, Betz M, van Driel H M 2007 Phys. Rev. B 75 155426

    [9]

    Guo L, Hodson S L, Fisher T S, Xu X F 2012 J. Heat Transfer 134 042402

    [10]

    Wang B L,Wang R, Liu R J, Lu X H, Zhao J M, Li Z Y 2013 Sci. Rep. 3 2358

    [11]

    Venkatakrishnan K, Tan B, Ngoi B K A 2002 Opt. Laser Technol. 34 199

    [12]

    Wang H D, Ma W G, Zhang X, Wang W 2010 Acta Phys. Sin. 59 3856 (in Chinese) [王海东, 马维刚, 张兴, 王玮 2010 物理学报 59 3856]

    [13]

    Zhu L D, Sun F Y, Zhu J, Tang D W 2012 Acta Phys. Sin. 61 130512 (in Chinese) [朱丽丹, 孙方远, 祝捷, 唐大伟 2012 物理学报 61 130512]

    [14]

    Anisimov S, Kapeliovich B, Perelman T 1974 Soviet Phys. JETP 39 375

    [15]

    Elsayed-Ali H E, Norris T B, Pessot M A, MourouG A 1987 Phys. Rev. Lett. 58 1212

    [16]

    Fang R R, Wei H, Li Z H, Zhang D M 2012 Solid State Commun. 152 108

    [17]

    Li S Q, Ye H A, Liu C Y, Dou Y F, Huang Y 2013 Chin. Phys. B 22 077302

    [18]

    Hohlfeld J, Wellershoff S S, Gudde J, Conrad U, Jahnke V, Matthias E 2000 Chem. Phys. 251 237

    [19]

    Hopkins P E, Kassebaum J L, Norris P M 2009 J. Appl. Phys. 105 023710

    [20]

    Jesus G M, Michael P H, Stephen R M 2008 Surf. Sci. 602 3125

    [21]

    Bonn M, Denzler D N, Funk S, Wolf M, Wellershoff S S, Hohlfeld J 2000 Phys. Rev. B 61 1101

    [22]

    Hostetler J L, Smith A N, Czajkowsky D M, Norris P M 1999 Appl. Opt. 38 3614

    [23]

    Guo L, Xu X F 2014 J. Heat Transfer 136 122401

    [24]

    Carpene E 2006 Phys. Rev. B 74 024301

    [25]

    Lioudakis E, Othonos A, Dimakis E, Iliopoulos E, Georgakilas A 2006 Appl. Phys. Lett. 88 121128

    [26]

    Schoenlein R W, Lin W Z, Fujimoto J G, Eesley G L 1987 Phys. Rev. Lett. 58 1680

    [27]

    Garduno-Mejia J, Higlett M P, Meech S R 2007 Chem. Phys. 341 276

    [28]

    Conforti M, Valle G D 2012 Phys. Rev. B 85 245423

    [29]

    Sun C K, Vallee F, Acioli L H, Ippen E P, Fujimoto J G 1994 Phys. Rev. B 50 15337

    [30]

    Sun C K, Vallee F, Acioli L, Ippen E P, Fujimoto J G 1993 Phys. Rev. B 48 12365

    [31]

    Hopkins P E, Norris P M 2007 Appl. Surf. Sci. 253 6289

    [32]

    Yang Q, Du G Q, Chen F, Wu Y M, Si J H, Hou X 2014 Chin. J. Lasers 41 502005 (in Chinese) [杨青, 杜广庆, 陈烽, 吴艳敏, 司金海, 侯洵2014 中国激光 41 502005]

  • [1] 李冀, 陈亮, 冯芒. 基于离子阱中离子晶体的热传导的研究进展. 物理学报, 2024, 73(3): 033701. doi: 10.7498/aps.73.20231719
    [2] 赵罡, 梁汉普, 段益峰. 二维X-AlN (X = C, Si, TC) 半导体的可见光调控与反常热输运. 物理学报, 2023, 72(9): 096301. doi: 10.7498/aps.72.20230116
    [3] 曹义刚, 付萌萌, 杨喜昶, 李登峰, 王晓霞. 热传导对横截面不同的直管道中Kelvin-Helmholtz不稳定性的影响. 物理学报, 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [4] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系. 物理学报, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [5] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [6] 包立平, 李文彦, 吴立群. 热传导系数跳跃的三维非Fourier温度场分布的奇摄动双参数解. 物理学报, 2019, 68(20): 204401. doi: 10.7498/aps.68.20190144
    [7] 郑伟真, 赵斌, 胡广月, 郑坚. 稀疏膨胀过程中几何位形对于电子非局域热传导的影响. 物理学报, 2015, 64(19): 195201. doi: 10.7498/aps.64.195201
    [8] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟. 物理学报, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [9] 敖宏瑞, 陈漪, 董明, 姜洪源. 基于多物理场的TFC磁头热传导机理及其影响因素仿真研究. 物理学报, 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [10] 袁宗强, 褚敏, 郑志刚. Fermi-Pasta-Ulam β 格点链系统能量载流子研究. 物理学报, 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [11] 马艳红, 仝小龙, 朱彬, 张大义, 洪杰. 金属橡胶热物理性能理论与试验研究. 物理学报, 2013, 62(4): 048101. doi: 10.7498/aps.62.048101
    [12] 黎威志, 王军. 直流法测试薄膜热导的数值模拟研究. 物理学报, 2012, 61(11): 114401. doi: 10.7498/aps.61.114401
    [13] 高秀云, 郑志刚. 一维均匀Morse晶格体系的热流棘齿效应. 物理学报, 2011, 60(4): 044401. doi: 10.7498/aps.60.044401
    [14] 张世来, 刘福生, 彭小娟, 张明建, 李永宏, 马小娟, 薛学东. 纳秒尺度金属熔化相变数值模拟及实验验证. 物理学报, 2011, 60(1): 014401. doi: 10.7498/aps.60.014401
    [15] 王军, 李京颍, 郑志刚. 热整流效应的消失与翻转现象. 物理学报, 2010, 59(1): 476-481. doi: 10.7498/aps.59.476
    [16] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射. 物理学报, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [17] 陈 丽, 程玉民. 瞬态热传导问题的复变量重构核粒子法. 物理学报, 2008, 57(10): 6047-6055. doi: 10.7498/aps.57.6047
    [18] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [19] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布. 物理学报, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [20] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成. 物理学报, 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
计量
  • 文章访问数:  5085
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-26
  • 修回日期:  2015-12-06
  • 刊出日期:  2016-02-05

/

返回文章
返回