搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维介观超导环的涡旋结构

史良马 周明健 张晴晴 张宏彬

引用本文:
Citation:

三维介观超导环的涡旋结构

史良马, 周明健, 张晴晴, 张宏彬

Vortex pattern in three-dimensional mesoscopic superconducting rings

Shi Liang-Ma, Zhou Ming-Jian, Zhang Qing-Qing, Zhang Hong-Bin
PDF
导出引用
  • 在Ginzburg-Landan理论的框架下, 运用有限差分法研究了在圆环电流产生磁场下的介观超导圆环内的涡旋结构, 讨论了超导圆环尺寸和不同空间分布的磁场对涡旋形成的影响, 得到在一般超导圆环体内的基态多是巨涡旋态、而多涡旋态多以激发态形式存在的结论, 说明磁场一般从超导圆环的环孔穿过, 而很难穿过超导圆环体.
    Vortex structures in a mesoscopic a superconducting ring, which is in the magnetic field generated by a circular electric current, are investigated based on the phenomenological Ginzburg-Landau (G-L) theory. Due to the axial symmetry of the system, the three-dimensional problem is reduced to a two-dimensional problem. We can mesh a two-dimensional sample into grids, and discretize the first G-L equation by using the finite-difference method. Then the eigenvalues and eigenfunctions will be evaluated numerically by solving the discrete equations. With the eigenvalues and eigenfunctions we further obtain the minimum free energy of the system and the corresponding superconducting wave function. We discuss the influences of the ring size and magnetic field distribution on two kinds of the vortex structures: giant vortex state (GVS) and multivortex state (MVS). Calculations show: 1) the GVS with axial symmetric wave function exists only in a small size superconducting ring, as the GVS is a state of single vortex line that only goes through the hole at the center of the superconducting ring and carries several magnetic flux quanta with it; 2) with the increase of the ring size, the diamagnetism of superconducting ring becomes stronger, and the critical magnetic field value of a giant vortex state increases, and the maximal number of giant vortexes that the superconducting ring can accommodate is also growing; furthermore, the entrance of a flux line will cause fluctuations of critical field values; 3) when the superconducting ring size is large enough, a GVS splits into a number of MVS. The MVS is an excited state and the GVS is mostly a ground state; 4) the free energy of the system changes with the magnetic field distribution, the magnetic field provided by a central small current loop can pass through the superconducting ring easily, and produce multivortices whose formations are diverse; if the magnetic field runs parallel to the plane of the superconducting ring, it is difficult to pass through the superconducting ring and form multivortices; 5) the vortex lines are naturally bent with the magnetic field lines and can pass through the same horizontal plane twice, so that one of the two vortex states seems to be an antivortex state; generally, the magnetic field lines can go through the hole of a superconducting ring easily but can hardly penetrate through the body of a superconducting ring, the structure of multivortices is similar to that of the magnetic field distribution in a superconducting ring. We also obtain a vortex structure with coexistences of giant vortex and multivortices. This study is of significance for the application of superconducting nanomaterials.
      通信作者: 史良马, slm428@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11742063)和安徽省高校省级科学研究重点项目(批准号: KJ2012A203)资助的课题.
      Corresponding author: Shi Liang-Ma, slm428@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11742063) and the Province Key Program of Science Research of Anhui High School, China (Grant No. KJ2012A203).
    [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Abrikosov A A 1957 Sov. Phys. JETP 5 1174

    [3]

    Yeoh W K, Gault B, Cui X Y, Zhu C, Moody M P, Li L, Zheng R K, Li W X, Wang X L, Dou S X, Sun G L, Lin C T, Ringer S P 2011 Phys. Rev. Lett. 106 247002

    [4]

    Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Peeters F M, Schweigert V A 2000 Nature 407 55

    [5]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [6]

    Grigorieva I V, Escoffier W, Richardson J, Vinnikov L Y, Dubonos S, Oboznov V 2006 Phys. Rev. Lett. 96 077005

    [7]

    Grigorieva I V, Escoffier W, Misko V R, Baelus B J, Peeters F M, Vinnikov L Y, Dubonos S V 2007 Phys. Rev. Lett. 99 147003

    [8]

    Singha Deo P, Schweigert V A, Peeters F M, Geim A K 1997 Phys. Rev. Lett. 79 4653

    [9]

    Baelus B J, Sun D, Peeters F M 2007 Phys. Rev. B 75 174523

    [10]

    Gillis S, Jykk J, MiloevićM V 2014 Phys. Rev. B 89 024512

    [11]

    Kim S, Burkardt J, Gunzburger M, Peterson J 2007 Phys. Rev. B 76 024509

    [12]

    de Romaguera A R C, Doria M M, Peeters F M 2007 Phys. Rev. B 76 020505

    [13]

    Misko V R, Fomin V M, Devreese J T, Moshchalkov V V 2003 Phys. Rev. Lett. 90 147003

    [14]

    Doria M M, de C Romaguera A R, Peeters F M 2007 Phys. Rev. B 75 064505

    [15]

    Marmorkos I K, Matulis A, Peeters F M 1996 Phys. Rev. B 53 2677

    [16]

    Carapella G, Sabatino P, Gombos M 2015 Physica C 515 7

    [17]

    Baelus B J, Peeters F M, Schweigert V A 2000 Phys Rev. B 61 9734

    [18]

    Lu-Dac M, Kabanov V V 2010 Physica C 470 942

    [19]

    Peng L, Wei Z J, Liu Y S, Fang Y F, Cai C B 2014 J. Supercond. Nov. Magn. 27 1217

    [20]

    Pan J Y, Zhang C, He F, Feng Q R 2013 Acta Phys. Sin. 62 127401 (in Chinese) [潘杰云, 张辰, 何法, 冯庆荣 2013 物理学报 62 127401]

    [21]

    Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Peng X Y, Zhou W W 2013 Acta Phys. Sin. 62 137401 (in Chinese) [丁发柱, 古宏伟, 张腾, 王洪艳, 屈飞, 彭星煜, 周微微 2013 物理学报 62 137401]

    [22]

    Wang M, Ou Y B, Li F S, Zhang W H, Tang C J, Wang L L, Xue Q K, Ma X C 2014 Acta Phys. Sin. 63 027401 (in Chinese) [王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村 2014 物理学报 63 027401]

    [23]

    Zhang Y H, Li Y Z 1992 Superconducting Physics (Hefei: University of Science and Technology of China Press) p85 (in Chinese) [张裕恒, 李玉芝 1992 超导物理 (合肥: 中国科学技术大学出版社) 第85页]

    [24]

    Jackson J D (translated by Zhu P Y) 1978 Classical Electrodynamics (Beijing: People's Education Press) pp195-196 (in Chinese) [杰克逊J D 著(朱培豫 译) 1978经典电动力学(北京: 人民教育出版社)第195196页]

  • [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Abrikosov A A 1957 Sov. Phys. JETP 5 1174

    [3]

    Yeoh W K, Gault B, Cui X Y, Zhu C, Moody M P, Li L, Zheng R K, Li W X, Wang X L, Dou S X, Sun G L, Lin C T, Ringer S P 2011 Phys. Rev. Lett. 106 247002

    [4]

    Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Peeters F M, Schweigert V A 2000 Nature 407 55

    [5]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [6]

    Grigorieva I V, Escoffier W, Richardson J, Vinnikov L Y, Dubonos S, Oboznov V 2006 Phys. Rev. Lett. 96 077005

    [7]

    Grigorieva I V, Escoffier W, Misko V R, Baelus B J, Peeters F M, Vinnikov L Y, Dubonos S V 2007 Phys. Rev. Lett. 99 147003

    [8]

    Singha Deo P, Schweigert V A, Peeters F M, Geim A K 1997 Phys. Rev. Lett. 79 4653

    [9]

    Baelus B J, Sun D, Peeters F M 2007 Phys. Rev. B 75 174523

    [10]

    Gillis S, Jykk J, MiloevićM V 2014 Phys. Rev. B 89 024512

    [11]

    Kim S, Burkardt J, Gunzburger M, Peterson J 2007 Phys. Rev. B 76 024509

    [12]

    de Romaguera A R C, Doria M M, Peeters F M 2007 Phys. Rev. B 76 020505

    [13]

    Misko V R, Fomin V M, Devreese J T, Moshchalkov V V 2003 Phys. Rev. Lett. 90 147003

    [14]

    Doria M M, de C Romaguera A R, Peeters F M 2007 Phys. Rev. B 75 064505

    [15]

    Marmorkos I K, Matulis A, Peeters F M 1996 Phys. Rev. B 53 2677

    [16]

    Carapella G, Sabatino P, Gombos M 2015 Physica C 515 7

    [17]

    Baelus B J, Peeters F M, Schweigert V A 2000 Phys Rev. B 61 9734

    [18]

    Lu-Dac M, Kabanov V V 2010 Physica C 470 942

    [19]

    Peng L, Wei Z J, Liu Y S, Fang Y F, Cai C B 2014 J. Supercond. Nov. Magn. 27 1217

    [20]

    Pan J Y, Zhang C, He F, Feng Q R 2013 Acta Phys. Sin. 62 127401 (in Chinese) [潘杰云, 张辰, 何法, 冯庆荣 2013 物理学报 62 127401]

    [21]

    Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Peng X Y, Zhou W W 2013 Acta Phys. Sin. 62 137401 (in Chinese) [丁发柱, 古宏伟, 张腾, 王洪艳, 屈飞, 彭星煜, 周微微 2013 物理学报 62 137401]

    [22]

    Wang M, Ou Y B, Li F S, Zhang W H, Tang C J, Wang L L, Xue Q K, Ma X C 2014 Acta Phys. Sin. 63 027401 (in Chinese) [王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村 2014 物理学报 63 027401]

    [23]

    Zhang Y H, Li Y Z 1992 Superconducting Physics (Hefei: University of Science and Technology of China Press) p85 (in Chinese) [张裕恒, 李玉芝 1992 超导物理 (合肥: 中国科学技术大学出版社) 第85页]

    [24]

    Jackson J D (translated by Zhu P Y) 1978 Classical Electrodynamics (Beijing: People's Education Press) pp195-196 (in Chinese) [杰克逊J D 著(朱培豫 译) 1978经典电动力学(北京: 人民教育出版社)第195196页]

  • [1] 全海涛, 董辉, 孙昌璞. 介观统计热力学理论与实验. 物理学报, 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [2] 林乃波, 林友辉, 黄巧玲, 刘向阳. 超分子凝胶与介观结构. 物理学报, 2016, 65(17): 174702. doi: 10.7498/aps.65.174702
    [3] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [4] 杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友. RIKEN介观器件腔中粒子输运过程的混沌性质及分形自相似结构研究. 物理学报, 2013, 62(8): 080505. doi: 10.7498/aps.62.080505
    [5] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟. 物理学报, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [6] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信. 物理学报, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [7] 史良马, 刘连忠, 王向贤, 朱仁义. 介观薄圆环中的间隙性超导. 物理学报, 2012, 61(15): 157401. doi: 10.7498/aps.61.157401
    [8] 全军, T. C. Au Yeung, 邵乐喜. 基于自洽输运理论的介观体系动态电导的研究. 物理学报, 2011, 60(8): 087201. doi: 10.7498/aps.60.087201
    [9] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变. 物理学报, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [10] 安兴涛, 李玉现, 刘建军. 介观物理系统中的噪声. 物理学报, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [11] 施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民. 应力退火Fe基纳米晶薄带横向磁各向异性的介观结构研究. 物理学报, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [12] 王 权, 丁建宁, 何宇亮, 薛 伟, 范 真. 氢化硅薄膜介观力学行为及其与微结构内禀关联特性. 物理学报, 2007, 56(8): 4834-4840. doi: 10.7498/aps.56.4834
    [13] 杨全民, 许启明, 方允樟, 王玲玲, 施方也. 铁基纳米晶合金介观结构的等效RLC并联模型. 物理学报, 2007, 56(6): 3366-3373. doi: 10.7498/aps.56.3366
    [14] 杨全民, 王玲玲, 孙德成. 介观结构对纳米晶软磁合金巨磁阻抗效应影响的理论分析. 物理学报, 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
    [15] 龙超云. 介观并联RLC电路的量子涨落. 物理学报, 2003, 52(8): 2033-2036. doi: 10.7498/aps.52.2033
    [16] 瞿 海, 周世平. 高温超导体混合态磁通涡旋结构. 物理学报, 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
    [17] 王继锁, 韩保存, 孙长勇. 介观电容耦合电路的量子涨落. 物理学报, 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
    [18] 牛金海, 周世平, 徐克西. s+id波高温超导体的单根涡旋线结构. 物理学报, 1998, 47(6): 985-989. doi: 10.7498/aps.47.985
    [19] 陈斌, 李有泉, 沙健, 张其瑞. 介观电路中电荷的量子效应. 物理学报, 1997, 46(1): 129-133. doi: 10.7498/aps.46.129
    [20] 高守恩, 陈斌, 焦正宽. 低温下介观电路的量子涨落. 物理学报, 1995, 44(9): 1480-1483. doi: 10.7498/aps.44.1480
计量
  • 文章访问数:  5566
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 修回日期:  2015-11-30
  • 刊出日期:  2016-02-05

/

返回文章
返回