搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面微结构对碳化硅晶须掺杂石墨阴极爆炸电子发射性能的影响

华叶 万红 陈兴宇 吴平 白书欣

引用本文:
Citation:

表面微结构对碳化硅晶须掺杂石墨阴极爆炸电子发射性能的影响

华叶, 万红, 陈兴宇, 吴平, 白书欣

Influence of surface microstructure on explosive electron emission properties of graphite cathode doped by silicon carbide whiskers

Hua Ye, Wan Hong, Chen Xing-Yu, Wu Ping, Bai Shu-Xin
PDF
导出引用
  • 爆炸发射阴极已广泛应用于高功率微波源,但常规场致爆炸发射阴极存在使用寿命短或电子发射不均匀的问题,改善阴极材料是解决这一问题的有效途径. 本文将碳化硅晶须掺杂到石墨中制备得到阴极,从二极管电流波形上升沿和输出微波脉宽产生的变化着手,分析了碳化硅晶须掺杂石墨阴极表面材料成分和微观形貌对其电子发射性能的影响机理. 研究发现,碳化硅晶须的存在,不仅有利于阴极场发射的快速启动、发射微点数目增多,还有利于降低等离子体膨胀速度、抑制脉冲缩短现象,使得输出微波脉宽增大. 随着脉冲发射数量增多,碳化硅晶须掺杂石墨阴极表面被等离子体不断“抛光”,微凸起形状因子减小、均匀性提高,场发射启动速度减慢,但输出微波脉宽增大.
    Explosive emission cathode (EEC) is a pivotal component in high power microwave source (HPMS), of which the ultimate properties are significantly dependent on the quality of electron beams generated from the cathode. Short lifetime and poor emission uniformity are the persistent drawbacks of conventional field EEC. Improvement of cathode material by changing its compositions and modifying surface micromorphology, is a feasible way to solve this problem. Graphite is one of the frequently used materials for EECs due to its long life-time and sturdy performance under high voltage and repetition frequency. Meanwhile silicon carbide (SiC) whiskers are distinguished by high aspect ratio (ratio of height to diameter) and low work function which is in favor of the fast onset of electron emission. In this work, the novel composites, composed of SiC whiskers, pitch and major graphite powders, are prepared by the conventional mingling and sintering. The cathodes are installed on TPG1000 system with a parameterized pulse of 970 kV, 9.2 kA, and 50 ns. By analyzing the changes of the rise edge of measured diode current and output microwave pulse duration, the effects of material composition and surface micromorphology on electron emission properties for the cathode are disclosed in detail. The results, based on the comparison of emission properties between graphite cathodes with and without SiC whiskers doped, reveal that SiC whiskers play an important role in accelerating the field emission of cathode, which is demonstrated by the eclipse of displacement current peak on the rise edge of measured current waveform after doping. Meanwhile, the duration of output microwave pulse is enhanced by about 11% after doping, which could be explained by the lower expansion speed of Si plasma. Moreover, the surface micro-protrusions of graphite cathode doped by SiC whiskers are constantly “polished” by heating effect and cathode plasma as the number of emission pulses increases to 11000. This is in quite good agreement with the appearance of the displacement current peak on the rise edge of measured current curves after 6000 and 11000 pulses treatment. These changes imply that the initial speed of field emission from cathode is slowed down gradually. The output microwave pulse starts early, which is benefited from the homogeneous surface micromorphology of the cathode due to “polishing” effect. The quantity of releasing absorbed gases, including water and vacuum pump oil vapor, decreases with increasing emission pulses. Then the pulse shortening phenomenon is restrained and the falling edge of output microwave pulse is extended. The duration of output microwave pulse is increased by about 5%, for graphite cathode doped by SiC whiskers after experiencing 11000 pulses. In conclusion, the reaction mechanism of SiC whiskers in the process of explosive electron emission (EEE) is considered as being due to accelerating the onset of felid emission and reducing the expansion speed of cathode plasma. Therefore, combination with SiC whiskers is an effective way to improve the electron emission properties of graphite EECs, especially in the output microwave pulse width and energy conversion efficiency of HPMS.
      通信作者: 万红, wanhong@nudt.edu.cn
      Corresponding author: Wan Hong, wanhong@nudt.edu.cn
    [1]

    Benford J, Swegl J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwaves (2nd Ed.) (Beijing: National Defense Industry Press) p35 (in Chinese) [本福德J, 斯威格J A, 谢米洛格鲁E 著(江伟华,张驰 译) 2009 高功率微波 (第二版) (北京:国防工业出版社) 第35页]

    [2]

    Sun J 2006 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [孙钧 2006 博士学位论文(北京: 清华大学)]

    [3]

    Zhang Y H, Song F L, Xiang F, Kang Q, Luo M, Gong S G 2008 High Power Laser Particle Beams 20 863 (in Chinese) [张永辉, 宋法伦, 向飞,康强,罗敏,龚胜刚 2008 强激光与粒子束 20 863]

    [4]

    Jin Z X, Zhang J, Lei Y, Qian B L, Fan Y W, Zhou S Y 2011 High Power Laser Particle Beams 23 1307 (in Chinese) [靳振兴, 张军, 雷应,钱宝良,樊玉伟,周生岳 2011 强激光与粒子束 23 1307]

    [5]

    Krasik Y E, Dunaevsky A, Gleizer J Z, Felsteiner J, Kotov Y A, Sokovnin S Y, Balezin M E 2002 J. Appl. Phys. 91 9385

    [6]

    Bykov N M, Gubanov V P, Gunin A V, Ksrovin S D, Kutenkov O P, Landl V F, Polevin S D, Rostov V V, Mesyats G A, Zagulov F Y 1995 Proceeding of the 10th IEEE International Pulsed Power Conference Albuquerque, NM, USA, July 3-6, 1995 p71

    [7]

    Gunin A V, Landl V F, Korovin S D, Mesyats G A, Pegel I V, Rostov V V 2000 IEEE Trans. Plasma Sci. 28 537

    [8]

    Korovin S D, Rostov V V, Polevin S D 2004 Proc. IEEE 92 1082

    [9]

    Shiffler D, Ruebush M, Zagar D, LaCour M, Golby K 2002 IEEE Trans. Plasma Sci. 91 1592

    [10]

    Roy A, Patel A, Menon R, Sharma A, Chakravarthy D P, Patil D S 2011 Phys. Plasmas 18 103108

    [11]

    Shiffler D, Ruebush M, Zagar D, LaCour M, Golby K, Umstattd R, Clark M C 2001 Appl. Phys. Lett. 79 2871

    [12]

    Russell C R 1967 Elements of Energy Conversion (London: Pergamon Press) p305

    [13]

    Qin Y X, Hu M 2008 Appl. Surf. Sci. 254 3315

    [14]

    Puchkarev V F, Mesyats G A 1995 J. Appl. Phys. 78 5633

    [15]

    Sun J, Wu P, Huo S F, Tan W B, Shao H, Chen C H, Liu G Z 2014 IEEE Trans. Plasma Sci. 42 2179

    [16]

    Huo S F 2011 M. S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese) [霍少飞 2011 硕士学位论文 (西安: 西北核技术研究所)]

    [17]

    Wu P, Huo S F, Sun J, Chen C H, Liu G Z 2015 Phys. Plasmas 22 083104

    [18]

    Wu P, Sun J, Ye H 2015 Phys. Plasmas 22 063109

    [19]

    McBride R D, Jennings C A, Vesey R A, Rochau GA, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. Spec. Top. Accel Beams 13 120401

    [20]

    Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990 (in Chinese) [宫玉彬, 张章, 魏彦玉,孟凡宝,范植开,王文祥 2004 物理学报 53 3990]

    [21]

    Benford J, Benford G 1997 IEEE Trans. Plasma Sci. 5 2

    [22]

    Goebel D M 1998 IEEE Trans. Plasma Sci. 26 3

    [23]

    Fursey G N, Polyakov M A, Shirochin L A, Saveliev A N 2003 Appl. Surf. Sci. 215 286

    [24]

    Korovin S D, Litvinov E A, Mesyats G A, Rostov V V, Rukin S N, Shpak V G, Yalandin M I 2006 IEEE Trans. Plasma Sci. 34 1771

    [25]

    Mesyats G A (translated by Li G Z) 2007 Vacuum Discharge Physics and High Power Pulse Technology (Beijing: National Denfense Industry Press) pp297-298 (in Chinese) [米夏兹G A 著 (李国政 译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第297-298页]

    [26]

    Mesyats G A, Zubarev N M 2015 J. Appl. Phys. 117 043302

    [27]

    Mesyats G A 1995 IEEE Trans. Plasma Sci. 23 879

    [28]

    Barengolts S A, Mesyats G A, Shmelev D L 2003 IEEE Trans. Plasma Sci. 31 809

  • [1]

    Benford J, Swegl J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwaves (2nd Ed.) (Beijing: National Defense Industry Press) p35 (in Chinese) [本福德J, 斯威格J A, 谢米洛格鲁E 著(江伟华,张驰 译) 2009 高功率微波 (第二版) (北京:国防工业出版社) 第35页]

    [2]

    Sun J 2006 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [孙钧 2006 博士学位论文(北京: 清华大学)]

    [3]

    Zhang Y H, Song F L, Xiang F, Kang Q, Luo M, Gong S G 2008 High Power Laser Particle Beams 20 863 (in Chinese) [张永辉, 宋法伦, 向飞,康强,罗敏,龚胜刚 2008 强激光与粒子束 20 863]

    [4]

    Jin Z X, Zhang J, Lei Y, Qian B L, Fan Y W, Zhou S Y 2011 High Power Laser Particle Beams 23 1307 (in Chinese) [靳振兴, 张军, 雷应,钱宝良,樊玉伟,周生岳 2011 强激光与粒子束 23 1307]

    [5]

    Krasik Y E, Dunaevsky A, Gleizer J Z, Felsteiner J, Kotov Y A, Sokovnin S Y, Balezin M E 2002 J. Appl. Phys. 91 9385

    [6]

    Bykov N M, Gubanov V P, Gunin A V, Ksrovin S D, Kutenkov O P, Landl V F, Polevin S D, Rostov V V, Mesyats G A, Zagulov F Y 1995 Proceeding of the 10th IEEE International Pulsed Power Conference Albuquerque, NM, USA, July 3-6, 1995 p71

    [7]

    Gunin A V, Landl V F, Korovin S D, Mesyats G A, Pegel I V, Rostov V V 2000 IEEE Trans. Plasma Sci. 28 537

    [8]

    Korovin S D, Rostov V V, Polevin S D 2004 Proc. IEEE 92 1082

    [9]

    Shiffler D, Ruebush M, Zagar D, LaCour M, Golby K 2002 IEEE Trans. Plasma Sci. 91 1592

    [10]

    Roy A, Patel A, Menon R, Sharma A, Chakravarthy D P, Patil D S 2011 Phys. Plasmas 18 103108

    [11]

    Shiffler D, Ruebush M, Zagar D, LaCour M, Golby K, Umstattd R, Clark M C 2001 Appl. Phys. Lett. 79 2871

    [12]

    Russell C R 1967 Elements of Energy Conversion (London: Pergamon Press) p305

    [13]

    Qin Y X, Hu M 2008 Appl. Surf. Sci. 254 3315

    [14]

    Puchkarev V F, Mesyats G A 1995 J. Appl. Phys. 78 5633

    [15]

    Sun J, Wu P, Huo S F, Tan W B, Shao H, Chen C H, Liu G Z 2014 IEEE Trans. Plasma Sci. 42 2179

    [16]

    Huo S F 2011 M. S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese) [霍少飞 2011 硕士学位论文 (西安: 西北核技术研究所)]

    [17]

    Wu P, Huo S F, Sun J, Chen C H, Liu G Z 2015 Phys. Plasmas 22 083104

    [18]

    Wu P, Sun J, Ye H 2015 Phys. Plasmas 22 063109

    [19]

    McBride R D, Jennings C A, Vesey R A, Rochau GA, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. Spec. Top. Accel Beams 13 120401

    [20]

    Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990 (in Chinese) [宫玉彬, 张章, 魏彦玉,孟凡宝,范植开,王文祥 2004 物理学报 53 3990]

    [21]

    Benford J, Benford G 1997 IEEE Trans. Plasma Sci. 5 2

    [22]

    Goebel D M 1998 IEEE Trans. Plasma Sci. 26 3

    [23]

    Fursey G N, Polyakov M A, Shirochin L A, Saveliev A N 2003 Appl. Surf. Sci. 215 286

    [24]

    Korovin S D, Litvinov E A, Mesyats G A, Rostov V V, Rukin S N, Shpak V G, Yalandin M I 2006 IEEE Trans. Plasma Sci. 34 1771

    [25]

    Mesyats G A (translated by Li G Z) 2007 Vacuum Discharge Physics and High Power Pulse Technology (Beijing: National Denfense Industry Press) pp297-298 (in Chinese) [米夏兹G A 著 (李国政 译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第297-298页]

    [26]

    Mesyats G A, Zubarev N M 2015 J. Appl. Phys. 117 043302

    [27]

    Mesyats G A 1995 IEEE Trans. Plasma Sci. 23 879

    [28]

    Barengolts S A, Mesyats G A, Shmelev D L 2003 IEEE Trans. Plasma Sci. 31 809

  • [1] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [2] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [3] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [4] 郭晶, 郭福明, 陈基根, 杨玉军. 高频激光脉宽对原子光电子发射谱的影响. 物理学报, 2018, 67(7): 073202. doi: 10.7498/aps.67.20172440
    [5] 陆乃彦, 余雪健, 万佳伟, 翁雨燕, 郭俊宏, 刘宇. 微图案化金衬底表面等离子体共振光学特性. 物理学报, 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [6] 王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 利用表面微结构提高波长上转换红外探测器效率. 物理学报, 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [7] 张健, 巴德纯, 赵崇凌, 刘坤, 杜广煜. 线性微波化学气相沉积制备SiNx薄膜的微结构及光学性能研究. 物理学报, 2015, 64(6): 067801. doi: 10.7498/aps.64.067801
    [8] 张凯, 陆勇俊, 王峰会. 表面能梯度驱动下纳米水滴在不同微结构表面上的运动. 物理学报, 2015, 64(6): 064703. doi: 10.7498/aps.64.064703
    [9] 王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东. 球壳结构金阴极及其X射线光电发射特性. 物理学报, 2015, 64(9): 094103. doi: 10.7498/aps.64.094103
    [10] 高仁喜, 高胜英, 范光华, 刘杰, 王强, 赵海峰, 曲士良. 飞秒激光改性6H-碳化硅晶体表面光电导增益现象研究. 物理学报, 2014, 63(6): 067801. doi: 10.7498/aps.63.067801
    [11] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [12] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [13] 宋久旭, 杨银堂, 郭立新, 王平, 张志勇. 反位缺陷对碳化硅纳米管电子结构和光学性质影响研究. 物理学报, 2012, 61(23): 237301. doi: 10.7498/aps.61.237301
    [14] 袁春华, 李晓红, 唐多昌, 杨宏道, 李国强. Nd:YAG纳秒激光诱导硅表面微结构的演化. 物理学报, 2010, 59(10): 7015-7019. doi: 10.7498/aps.59.7015
    [15] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [16] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [17] 叶碧青, 马忠林, 王明琪. 长脉宽脉冲Nd:YAG激光器性能的研究. 物理学报, 1988, 37(3): 416-423. doi: 10.7498/aps.37.416
    [18] 郭常霖. 属特殊结构系列的若干碳化硅多型体的晶体结构. 物理学报, 1982, 31(10): 1369-1379. doi: 10.7498/aps.31.1369
    [19] 郭常霖, 唐士鑫. 侵蚀法测定碳化硅结构极性的研究. 物理学报, 1966, 22(7): 831-835. doi: 10.7498/aps.22.831
    [20] 王本民, 田克温, 曹国斌. 碳化硅纤维的气化性能. 物理学报, 1964, 20(3): 287-288. doi: 10.7498/aps.20.287
计量
  • 文章访问数:  6671
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-14
  • 修回日期:  2016-04-09
  • 刊出日期:  2016-08-05

/

返回文章
返回