搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gd掺杂对无氟金属有机物沉积法制备Y1-xGdxBCO薄膜的应力调控

陈桢妮 刘胜利 王海云 程杰

引用本文:
Citation:

Gd掺杂对无氟金属有机物沉积法制备Y1-xGdxBCO薄膜的应力调控

陈桢妮, 刘胜利, 王海云, 程杰

Stress mechanism of Y1-xGdxBCO thin film with Gd substitution prepared by F-free metal organic deposition method

Chen Zhen-Ni, Liu Sheng-Li, Wang Hai-Yun, Cheng Jie
PDF
导出引用
  • 为了揭示Gd掺杂对克服YBa2Cu3O7-(YBCO)薄膜厚度效应的机制,采用无氟金属有机物沉积法在铝酸镧基底上沉积制备了一系列不同掺杂比例的Y1-xGdxBCO薄膜,并且采用X射线衍射、扫描电子显微镜、Raman光谱仪分析薄膜的生长取向、微观形貌以及晶格振动特征,系统地研究了Gd掺杂对应力的调控机制.结果表明:随着Gd掺杂比例的增加,晶体的晶格常数变大,导致膜内的张应力增加,薄膜的c轴取向也随之升高;但是随着Gd含量的进一步增加,会使薄膜结构恶化,性能下降;当Gd:Y的掺杂比例为1:1时,薄膜的c轴晶粒取向最佳,可以有效克服厚度效应.
    The plasma discharge channel in three-dimensional helical shape induced by pulsed direct current (DC) discharge without external stable magnetic field is discovered experimentally. It can be observed by intensified charge-coupled device camera that a luminous plasma structure fast propagates along a helical path in the form of guided streamer (ionization wave). And the propagation of the streamer is stable and repeatable. We take this streamer which propagates along the helical discharge path as the study object, and explain its mechanism by constructing an electromagnetic model. The result shows that the helical shape plasma plumes can exhibit two different chiral characteristics (right-handed and left-handed helical pattern). While the discharge parameters such as pulse frequency, boundary condition, etc. can all affect the propagating characteristics of helical streamers. The electromagnetic radiation driven by pulsed DC power inside the dielectric tube which forms the wave mode is an important source of the poloidal electrical field. The helical steamers form when the poloidal electrical field is close to the axial electrical field. The velocities of the propagation in poloidal and axial direction are estimated respectively, and the hybrid propagation modes involving the interchangeable helical pattern and the straight-line pattern propagating plasmas are explained from the viewpoint of multi-wave interaction. Recently, the second-generation YBa2Cu3O7- (YBCO) high temperature superconducting materials have attracted much attention and become a hot research point. The YBCO coated conductors are widely used in transmission cables, motors, generators and magnetic energy storage systems due to their high critical current densities and high irreversible fields. To obtain high critical current, it is necessary to increase the thickness of YBCO film. However, as the thickness increases, the cracking of the film appears and the a-axis grains form, which causes the critical current density to decrease drastically, hence the critical current declines, i.e., the so called thickness effect appears. In order to overcome the thickness effect, a great many of efforts have been devoted to it. It is realized gradually that the growth orientation of the c-axis can be controlled by the stress of film, which can be achieved through the substitution of Y by Gd and Sm each with a larger ionic radius. However, the systematical study of the evolution of the stress mechanism with the substitution ratio is still lacking due to the extreme complexity of the stress manipulation. Therefore, a series of Y1-xGdxBCO thin films with different substitution ratios is deposited on lanthanum aluminate substrates by the fluorine-free metal organic deposition method in order to reveal the evolution of the stress mechanism with Gd substitution. The growth orientations, microstructures and lattice vibration characteristics of the films are analyzed by X-ray diffraction, scanning electron microscopy and Raman spectroscopy. The results show that the lattice constant of the film increases and the orientation of the c-axis changes with the Gd substitution ratio for x increasing to a value less than 0.5, and the blue shift of the O(2)/O(3) mode of the Raman spectrum decreases with increasing x. For x=0.5, the blue shift of the O(2)/O(3) mode vanishes, indicating the free standing film with optimal c-axis orientation. However, with the further increase of Gd content, the film structure is deteriorated, and the performance is degraded as well. The red shift of the O(2)/O(3) mode occurs and the frequency decreases with increasing x. Our results indicate that the stress mechanism can be manipulated by controlling the content of various ionic radii in Y1-xGdxBCO films. The free standing film with optimal c-axis orientation can be obtained through adopting an appropriate substitution ratio, i.e., the ratio of m Y:Gd equaling 1:1. These results suggest that manipulation of the stress mechanism is a promising method to overcome the thickness effect effectively.
      通信作者: 刘胜利, liusl@njupt.edu.cn;chengj@njupt.edu.cn ; 程杰, liusl@njupt.edu.cn;chengj@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11405089)、江苏省六大人才高峰人才项目(批准号:2014-XCL-015)、苏州市科技局纳米技术专项基金(批准号:ZXG201444)和南京邮电大学自然科学基金(批准号:NY215124,NY214105)资助的课题.
      Corresponding author: Liu Sheng-Li, liusl@njupt.edu.cn;chengj@njupt.edu.cn ; Cheng Jie, liusl@njupt.edu.cn;chengj@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11405089),the Six Talent Peak Foundation of Jiangsu Province,China (Grant No.2014-XCL-015),the Nanotechnology Foundation of Suzhou Bureau of Science and Technology,China (Grant No.ZXG201444),and the Natural Science Foundation of Nanjing University of Posts and Telecommunications,China (Grant Nos.NY215124,NY214105).
    [1]

    Wang W T, Wang Z, Pu M H, Wang M J, Zhang X 2015 J. Supercond. Nov. Magn. 28 3249

    [2]

    Zhao X H, Zhang P, Wang Y B, Xiong J, Tao B W 2013 Adv. Cond. Matters Phys. 12 532181

    [3]

    Huang R X, Feng F, Wu W, Xue Y R, Zhang Y Y, Shi K, Qu T M, Zhao Y J, Wang X H, Zhang X W, Han Z H 2013 Supercond. Sci. Technol. 26 115010

    [4]

    Wang X D 2013 Guangzhou Chemical Industry 41 37 (in Chinese) [王醒东 2013 广州化工 41 37]

    [5]

    Lin J X, Yang W T, Gu Z H, Shu G Q, Li M J, Sang L, Guo Y Q, Liu Z Y, Cai C B 2015 Supercond. Sci. Technol. 28 045001

    [6]

    Liu L, Li Y, Xiao G, Wu X J 2015 Supercond. Nov. Magn. 28 403

    [7]

    Wang S S, Zhang Z L, Wang L, Gao L K, Liu J 2017 Physica C 534 68

    [8]

    Wang H Y, Ding F Z, Gu H W, Zhang H L, Dong Z B 2017 Rare Met. 36 37

    [9]

    Li Y M, Liu Z Y, Fang Q, Guo Y Q, Lu Y M, Bai C Y, Cai C B 2016 Physica C 531 14

    [10]

    Wang Y, Zhou L, Li C S, Yu Z M, Li J S, Jin L H, Wang P F, Lu Y F 2012 J. Supercond. Nov. Magn. 25 811

    [11]

    Venkataraman K, Baurceanu R, Maroni V A 2005 Appl. Spectrosc. 59 639

    [12]

    Sun M J, Yang W T, Liu Z Y, Bai C Y, Guo Y Q, Lu Y M, Cai C B 2015 Mater. Res. Express 2 096001

    [13]

    Rui R S, Liu Z Y, Bai C Y, Guo Y Q, Jin X Y, Cai C B 2014 J. Inorg. Mater. 29 1167 (in Chinese) [芮润生, 刘志勇, 白传易, 郭艳群, 金晓艳, 蔡传兵 2014 无机材料学报 29 1167]

    [14]

    Yang F, Liu Z Y, Bai C Y, Lu Y M, Guo Y Q, Cai C B 2016 J. Supercond. Nov. Magn. 29 1969

    [15]

    Moon H, Shin H Y, Jin H J, Jo W, Yoon S 2015 Prog. Supercond. Cryogenics 17 25

    [16]

    Ding F Z, Gu H W, Wang H Y, Zhang H L, Zhang T, Qu F, Dong Z B, Zhou W W 2015 Chin. Phys. B 24 057401

    [17]

    Bian W B, Chen Y Q, Li M J, Zhao G Y, Niu J F 2015 J. Sol-Gel Sci. Technol. 75 574

    [18]

    Li M J, Yang W T, Shu G Q, Bai C Y, Lu Y M, Guo Y Q, Liu Z Y, Cai C B 2015 IEEE Trans. Appl. Supercond. 25 6601804

    [19]

    Tang X, Zhao Y, Wu W, Grivel J C 2015 J. Mater. Sci: Mater. Electron. 26 1806

    [20]

    Shu G Q, Li M J, Boubeche M, Liu Z Y, Bai C Y, Cai C B 2014 IEEE Trans. Appl. Supercond. 24 7500303

  • [1]

    Wang W T, Wang Z, Pu M H, Wang M J, Zhang X 2015 J. Supercond. Nov. Magn. 28 3249

    [2]

    Zhao X H, Zhang P, Wang Y B, Xiong J, Tao B W 2013 Adv. Cond. Matters Phys. 12 532181

    [3]

    Huang R X, Feng F, Wu W, Xue Y R, Zhang Y Y, Shi K, Qu T M, Zhao Y J, Wang X H, Zhang X W, Han Z H 2013 Supercond. Sci. Technol. 26 115010

    [4]

    Wang X D 2013 Guangzhou Chemical Industry 41 37 (in Chinese) [王醒东 2013 广州化工 41 37]

    [5]

    Lin J X, Yang W T, Gu Z H, Shu G Q, Li M J, Sang L, Guo Y Q, Liu Z Y, Cai C B 2015 Supercond. Sci. Technol. 28 045001

    [6]

    Liu L, Li Y, Xiao G, Wu X J 2015 Supercond. Nov. Magn. 28 403

    [7]

    Wang S S, Zhang Z L, Wang L, Gao L K, Liu J 2017 Physica C 534 68

    [8]

    Wang H Y, Ding F Z, Gu H W, Zhang H L, Dong Z B 2017 Rare Met. 36 37

    [9]

    Li Y M, Liu Z Y, Fang Q, Guo Y Q, Lu Y M, Bai C Y, Cai C B 2016 Physica C 531 14

    [10]

    Wang Y, Zhou L, Li C S, Yu Z M, Li J S, Jin L H, Wang P F, Lu Y F 2012 J. Supercond. Nov. Magn. 25 811

    [11]

    Venkataraman K, Baurceanu R, Maroni V A 2005 Appl. Spectrosc. 59 639

    [12]

    Sun M J, Yang W T, Liu Z Y, Bai C Y, Guo Y Q, Lu Y M, Cai C B 2015 Mater. Res. Express 2 096001

    [13]

    Rui R S, Liu Z Y, Bai C Y, Guo Y Q, Jin X Y, Cai C B 2014 J. Inorg. Mater. 29 1167 (in Chinese) [芮润生, 刘志勇, 白传易, 郭艳群, 金晓艳, 蔡传兵 2014 无机材料学报 29 1167]

    [14]

    Yang F, Liu Z Y, Bai C Y, Lu Y M, Guo Y Q, Cai C B 2016 J. Supercond. Nov. Magn. 29 1969

    [15]

    Moon H, Shin H Y, Jin H J, Jo W, Yoon S 2015 Prog. Supercond. Cryogenics 17 25

    [16]

    Ding F Z, Gu H W, Wang H Y, Zhang H L, Zhang T, Qu F, Dong Z B, Zhou W W 2015 Chin. Phys. B 24 057401

    [17]

    Bian W B, Chen Y Q, Li M J, Zhao G Y, Niu J F 2015 J. Sol-Gel Sci. Technol. 75 574

    [18]

    Li M J, Yang W T, Shu G Q, Bai C Y, Lu Y M, Guo Y Q, Liu Z Y, Cai C B 2015 IEEE Trans. Appl. Supercond. 25 6601804

    [19]

    Tang X, Zhao Y, Wu W, Grivel J C 2015 J. Mater. Sci: Mater. Electron. 26 1806

    [20]

    Shu G Q, Li M J, Boubeche M, Liu Z Y, Bai C Y, Cai C B 2014 IEEE Trans. Appl. Supercond. 24 7500303

  • [1] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [2] 王三胜, 李方, 吴晗, 张竺立, 蒋雯, 赵鹏. 低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理. 物理学报, 2018, 67(3): 036103. doi: 10.7498/aps.67.20170822
    [3] 刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究. 物理学报, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [4] 潘孝军, 安秀云, 张海军, 张振兴, 谢二庆. 氨化法制备GaN:Tb纳米颗粒的光学性能. 物理学报, 2013, 62(3): 037105. doi: 10.7498/aps.62.037105
    [5] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [6] 王防震, 陈张海, 柏利慧, 黄少华, 沈学础. CdSe/ZnSe异质结构中Zn1-xCdxSe量子岛(点)的显微荧光光谱和显微拉曼光谱研究. 物理学报, 2006, 55(5): 2628-2632. doi: 10.7498/aps.55.2628
    [7] 何 萌, 吕惠宾, 周岳亮, 程波林, 陈正豪, 金奎娟, 杨国桢. YBa2Cu3O7-δ/SrNb0.01Ti0.99O3 p-n结的制备及其特性. 物理学报, 2005, 54(3): 1370-1372. doi: 10.7498/aps.54.1370
    [8] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [9] 刘峰, 黄钧伟, 刘伟, 肖玲, 任洪涛, 焦玉磊, 郑明辉, 阎守胜. 弱场下熔融织构YBa2Cu3O7-δ样品局域磁通蠕动的实验研究. 物理学报, 2001, 50(10): 2001-2007. doi: 10.7498/aps.50.2001
    [10] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
    [11] 王智河, 曹效文, 方 军, 陈治友, 李可斌. YBa2Cu3O7-δ外延薄膜的不可逆线与磁通玻璃线. 物理学报, 1999, 48(1): 154-162. doi: 10.7498/aps.48.154
    [12] 徐克西, 周世平, 鲍家善. YBa2Cu3O7-δ外延膜中的非线性光响应. 物理学报, 1998, 47(2): 307-315. doi: 10.7498/aps.47.307
    [13] 王智河, 曹效文, 陈敬林, 李可斌. YBa2Cu3O7-δ外延薄膜的有效钉扎势. 物理学报, 1998, 47(10): 1720-1726. doi: 10.7498/aps.47.1720
    [14] 袁松柳. YBa2Cu3O7-δ体系在B∥I∥c下磁场引起的电阻耗散. 物理学报, 1995, 44(8): 1268-1273. doi: 10.7498/aps.44.1268
    [15] 刘峰奇, 刘军政, 曹世勋, 程国生, 张金仓. YBa2Cu3O7-δ超导体氧缺陷的正电子寿命谱. 物理学报, 1995, 44(6): 929-935. doi: 10.7498/aps.44.929
    [16] 张贻瞳, 金新, 张长贵, 金继荣, 姚希贤, 吉争鸣, 孙志坚, 杨森祖. YBa2Cu3O7-δ薄膜热激发磁通蠕动研究. 物理学报, 1993, 42(7): 1174-1178. doi: 10.7498/aps.42.1174
    [17] 谢晓明, 陈廷国. YBa2Cu3O7-δ中正交-四方相变的级次. 物理学报, 1992, 41(11): 1830-1836. doi: 10.7498/aps.41.1830
    [18] 金新, 张贻瞳, 陆瑞熙, 姚希贤, 刘奉生, 牟慧麟, 吴晓祖, 周廉. Yba2Cu3O7-δ不可逆线与钉扎势的关联. 物理学报, 1992, 41(1): 123-127. doi: 10.7498/aps.41.123
    [19] 都有为, 邱子强, 唐焕, J. C. WALKER. 用穆斯堡尔效应研究YBa2Cu3O7-δ中的磁有序. 物理学报, 1990, 39(3): 472-478. doi: 10.7498/aps.39.472
    [20] 何振辉, 陈祖耀, 张酣, 张其瑞. Co,Zn元素对YBa2Cu3O7-δ的不同的掺杂效应. 物理学报, 1989, 38(1): 60-67. doi: 10.7498/aps.38.60
计量
  • 文章访问数:  3907
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-05-20
  • 刊出日期:  2017-08-05

/

返回文章
返回