搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合金元素对钢中NbC异质形核影响的第一性原理研究

熊辉辉 刘昭 张恒华 周阳 俞园

引用本文:
Citation:

合金元素对钢中NbC异质形核影响的第一性原理研究

熊辉辉, 刘昭, 张恒华, 周阳, 俞园

First-principles calculation of influence of alloying elements on NbC heterogeneous nucleation in steel

Xiong Hui-Hui, Liu Zhao, Zhang Heng-Hua, Zhou Yang, Yu Yuan
PDF
导出引用
  • 为了探索不同合金元素对NbC异质形核的影响,本文利用第一性原理研究了合金元素X(X=Cr,Mn,Mo,W,Zr,V,Ti,Cu和Ni)对ferrite(100)/NbC(100)界面性质的影响,并且分析了上述合金元素掺杂前后界面的黏附功、界面能和电子结构.研究结果表明,Cr,V和Ti掺杂的界面具有负的偏聚能,说明它们容易偏聚到ferrite/NbC界面,但Mn,W,Mo,Zr,Cu和Ni却难以偏聚到此界面.当Mn,Zr,Cu和Ni取代界面处的Fe原子后,界面的黏附强度降低,即这些合金减弱铁素体在NbC上的形核能力.然而Cr,W,Mo,V和Ti引入界面后,其黏附功比掺杂前的界面要大,且界面能均降低,即提高了界面的稳定性.因此,W,Mo,V和Ti,尤其是Cr,能够有效地促进铁素体形核和细化晶粒.电子结构分析表明,Zr和Cu引入界面后,界面处的Zr,Cu原子和C原子的相互作用变弱;然而Cr和W引入界面后,Cr,W和C原子之间形成了很强的非极性共价键,提高了ferrite/NbC界面的结合强度.
    The NbC precipitated in steel is in favor of the heterogeneous nucleation of ferrite, which is affected by the alloying elements at the ferrite/NbC interface. However, it is difficult to clearly understand the effect of alloying elements on the ferrite/NbC interface behavior experimentally. Therefore, the first-principles calculation is employed to address this problem in this paper. First of all, the segregation behaviors of alloying element X (=Cr, Mn, Mo, W, Zr, V, Ti, Cu and Ni) on the ferrite(100)/NbC(100) interface are systematically explored. And then, we investigate the influences of these alloying elements on the property of the ferrite/NbC interface. The work of adhesion (Wad), interfacial energy (γint) and electronic structure of ferrite/NbC interface alloyed by these elements are also analyzed. The results show that the (Cr, V, Ti)-doped interfaces have negative segregation energies, which indicates that Cr, V and Ti are easily segregated at the ferrite/NbC interface. Conversely, the Mn, W, Mo, Zr, Cu and Ni are difficult to segregate at the interface. When Mn, Zr, Cu and Ni replace the Fe atoms in the ferrite/NbC interface, the adhesive strength of the interface will decrease, thus weakening the heterogeneous nucleation of ferrite on NbC surface. However, the introduction of Cr, W, Mo, V and Ti will improve the stability of the ferrite/NbC interface due to the larger Wad and lower γint. Therefore, the Cr, W, Mo, V and Ti on the ferrite side of the interface can effectively promote ferrite heterogeneous nucleation on NbC surface to form fine ferrite grain. The analysis of difference charge density indicates that after the introduction of Zr and Cu in ferrite/NbC interface, the interactions among interfacial Zr, Cu and C atoms was weaken. However, when Cr and W are introduced into the clean interface, the strong Cr-C and W-C non-polar covalent bonds are formed, which enhances the adhesion strength of the ferrite/NbC interface. In addition, the minimum Cr-C bonding length at the Cr-doped interface suggests that the interface has the highest interface strength. The Mulliken population analysis shows that for the (Cr, W, Mo, V, Ti)-doped interfaces, the transfer charges of Cr, W, Mo, V and Ti are 1.12, 0.84, 0.54, 0.33 and 0.28, respectively. Nevertheless, for the clean interface, the transfer charge of Fe is only 0.05. Therefore, the interactions among interfacial Cr, W, Mo, V, Ti and C atoms are stronger than that between interfacial Fe and C atoms, which is in good accordance with the above analysis.
      通信作者: 熊辉辉, xionghui8888@126.com
    • 基金项目: 国家自然科学基金(批准号:51404113,51404110)和江西理工大学创新训练项目(批准号:XZG-16-08-14)资助的课题.
      Corresponding author: Xiong Hui-Hui, xionghui8888@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51404113, 51404110) and Innovation Training Program of Jiangxi University of Science and Technology, China (Grant No. XZG-16-08-14).
    [1]

    Matsuo S, Ando T, Grant N J 2000 Mater. Sci. Eng. A 288 34

    [2]

    Adamczyk J, Kalinowska E, Ozgowicz W, Wusatowski R 1995 J. Mater. Process. Technol. 53 23

    [3]

    Ghosh P, Ghosh C, Ray R K 2010 Acta Mater. 58 3842

    [4]

    Ghosh P, Ray R K, Ghosh C, Bhattacharjee D 2008 Scripta Mater. 58 939

    [5]

    Hong S G, Jun H J, Kang K B, Park C G 2003 Scripta Mater. 48 1201

    [6]

    Ju B, Wu H B, Tang D, Dang N 2016 J. Iron Steel Res. Int. 23 495

    [7]

    Hin C, Bréchet Y, Maugis P, Soisson F 2008 Acta Mater. 56 5653

    [8]

    Chung S H, Ha H P, Jung W S, Byun J Y 2006 ISIJ Int. 46 1523

    [9]

    Mizuno M, Tanaka I, Adachi H 1998 Acta Mater. 46 1637

    [10]

    Sawada H, Taniguchi S, Kawakami K, Ozaki T 2013 Modell. Simul. Mater. Sci. Eng. 21 045012

    [11]

    Jung W S, Chung S H, Ha H P, Byun J Y 2007 Solid State Phenom. 124 1625

    [12]

    Li Y, Gao Y, Xiao B, Min T, Ma S, Yi D 2011 Appl. Surf. Sci. 257 5671

    [13]

    Xie Y P, Zhao S J 2012 Comput. Mater. Sci. 63 329

    [14]

    Abdelkader H, Faraoun H I, Esling C 2011 J. Appl. Phys. 110 044901

    [15]

    Wang C, Wang C Y 2008 Surf. Sci. 602 2604

    [16]

    Zhang H Z, Wang S Q 2007 J. Phys. Condens. Matter 19 226003

    [17]

    Sun T, Wu X Z, Li W G, Wang R 2015 Phys. Scr. 90 035701

    [18]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [21]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208

    [22]

    Fors D H R, Wahnström G 2010 Phys. Rev. B 82 195410

    [23]

    Wang J W, Fan J L, Gong H R 2016 J. Alloys Compd. 661 553

    [24]

    Li J, Yang Y, Li L, Lou J, Luo X, Huang B 2013 J. Appl. Phys. 113 023516

    [25]

    Li J, Yang Y, Feng G, Luo X, Sun Q, Jin N 2013 J. Appl. Phys. 114 163522

    [26]

    Zhang Z, Sun X, Wang Z, Li Z, Yong Q, Wang G 2015 Mater. Lett. 159 249

    [27]

    Cao J, Yong Q, Liu Q, Sun X 2007 J. Mater. Sci. 42 10080

    [28]

    Han Y F, Dai Y B, Wang J, Shu D, Sun B D 2011 Appl. Surf. Sci. 257 7831

    [29]

    Lu S, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B 82 195103

    [30]

    Lee S J, Lee Y K, Soon A 2012 Appl. Surf. Sci. 258 9977

    [31]

    Yang M, Xu J G, Song H Y, Zhang Y G 2015 Chin. Phys. B 24 096202

    [32]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317

  • [1]

    Matsuo S, Ando T, Grant N J 2000 Mater. Sci. Eng. A 288 34

    [2]

    Adamczyk J, Kalinowska E, Ozgowicz W, Wusatowski R 1995 J. Mater. Process. Technol. 53 23

    [3]

    Ghosh P, Ghosh C, Ray R K 2010 Acta Mater. 58 3842

    [4]

    Ghosh P, Ray R K, Ghosh C, Bhattacharjee D 2008 Scripta Mater. 58 939

    [5]

    Hong S G, Jun H J, Kang K B, Park C G 2003 Scripta Mater. 48 1201

    [6]

    Ju B, Wu H B, Tang D, Dang N 2016 J. Iron Steel Res. Int. 23 495

    [7]

    Hin C, Bréchet Y, Maugis P, Soisson F 2008 Acta Mater. 56 5653

    [8]

    Chung S H, Ha H P, Jung W S, Byun J Y 2006 ISIJ Int. 46 1523

    [9]

    Mizuno M, Tanaka I, Adachi H 1998 Acta Mater. 46 1637

    [10]

    Sawada H, Taniguchi S, Kawakami K, Ozaki T 2013 Modell. Simul. Mater. Sci. Eng. 21 045012

    [11]

    Jung W S, Chung S H, Ha H P, Byun J Y 2007 Solid State Phenom. 124 1625

    [12]

    Li Y, Gao Y, Xiao B, Min T, Ma S, Yi D 2011 Appl. Surf. Sci. 257 5671

    [13]

    Xie Y P, Zhao S J 2012 Comput. Mater. Sci. 63 329

    [14]

    Abdelkader H, Faraoun H I, Esling C 2011 J. Appl. Phys. 110 044901

    [15]

    Wang C, Wang C Y 2008 Surf. Sci. 602 2604

    [16]

    Zhang H Z, Wang S Q 2007 J. Phys. Condens. Matter 19 226003

    [17]

    Sun T, Wu X Z, Li W G, Wang R 2015 Phys. Scr. 90 035701

    [18]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [21]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208

    [22]

    Fors D H R, Wahnström G 2010 Phys. Rev. B 82 195410

    [23]

    Wang J W, Fan J L, Gong H R 2016 J. Alloys Compd. 661 553

    [24]

    Li J, Yang Y, Li L, Lou J, Luo X, Huang B 2013 J. Appl. Phys. 113 023516

    [25]

    Li J, Yang Y, Feng G, Luo X, Sun Q, Jin N 2013 J. Appl. Phys. 114 163522

    [26]

    Zhang Z, Sun X, Wang Z, Li Z, Yong Q, Wang G 2015 Mater. Lett. 159 249

    [27]

    Cao J, Yong Q, Liu Q, Sun X 2007 J. Mater. Sci. 42 10080

    [28]

    Han Y F, Dai Y B, Wang J, Shu D, Sun B D 2011 Appl. Surf. Sci. 257 7831

    [29]

    Lu S, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B 82 195103

    [30]

    Lee S J, Lee Y K, Soon A 2012 Appl. Surf. Sci. 258 9977

    [31]

    Yang M, Xu J G, Song H Y, Zhang Y G 2015 Chin. Phys. B 24 096202

    [32]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究. 物理学报, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [3] 刘郅澄, 周杰, 陈凡, 彭彪, 彭文屹, 章爱生, 邓晓华, 罗显芝, 刘日新, 刘德武, 黄雨, 阎军. Si对Inconel 718合金中γ相影响的第一性原理研究. 物理学报, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [4] 吴迪, 杨永, 章小峰, 黄贞益, 王昭东. 第一性原理研究合金元素对逆变奥氏体在Cu沉淀上异质形核的影响. 物理学报, 2022, 71(8): 086301. doi: 10.7498/aps.71.20212144
    [5] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [6] 熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究. 物理学报, 2016, 65(24): 248101. doi: 10.7498/aps.65.248101
    [7] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [8] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [9] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [10] 赵荣达, 朱景川, 刘勇, 来忠红. FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究. 物理学报, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [11] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [12] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究. 物理学报, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [13] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [14] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [15] 郑浩勇, 王猛, 王修星, 黄卫东. 基于Wenzel模型的粗糙界面异质形核分析. 物理学报, 2011, 60(6): 066402. doi: 10.7498/aps.60.066402
    [16] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究. 物理学报, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [17] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [18] 王娜, 唐壁玉. L12型铝合金的结构、弹性和电子性质的第一性原理研究. 物理学报, 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [19] 张国英, 张辉, 魏丹, 罗志成, 李昱材. Bi,Sb及稀土元素对AZ91镁合金高温性能影响机理研究. 物理学报, 2009, 58(1): 444-449. doi: 10.7498/aps.58.444
    [20] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
计量
  • 文章访问数:  6344
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-05-01
  • 刊出日期:  2017-08-05

/

返回文章
返回