搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究合金元素对逆变奥氏体在Cu沉淀上异质形核的影响

吴迪 杨永 章小峰 黄贞益 王昭东

引用本文:
Citation:

第一性原理研究合金元素对逆变奥氏体在Cu沉淀上异质形核的影响

吴迪, 杨永, 章小峰, 黄贞益, 王昭东

First-principles study on effect of alloying elements on heterogeneous nucleation of reverse austenite on Cu precipitation

Wu Di, Yang Yong, Zhang Xiao-Feng, Huang Zhen-Yi, Wang Zhao-Dong
PDF
HTML
导出引用
  • 超高强度马氏体钢的力学性能强烈依赖于逆变奥氏体的形状、尺寸及含量. 通常, 提高逆变奥氏体含量, 有助于改善超高强度钢的塑韧性. 对含Cu马氏体淬火钢时效处理时, Cu粒子会在马氏体组织边界沉淀, 并作为质点促进逆变奥氏体形核. 为了探索不同合金元素对逆变奥氏体在Cu沉淀上异质形核的影响, 本文利用第一性原理方法研究了合金元素X (X = Cr, Al, Mo, W, Ni, Co, Mn)对Cu/γ-Fe界面性质的影响, 并分析了合金原子替换界面处Cu和Fe原子前后界面的黏附功、界面能和电子结构. 研究结果表明, 合金元素Cr, Mo, W, Mn替换Cu/γ-Fe界面处Cu原子时, Cu/γ-Fe界面处产生强烈的X—Fe共价键, 黏附功增大且界面能减小, 显著提高界面稳定性, 促进γ-Fe在Cu沉淀上异质形核. 而替换界面处Fe原子时, 界面稳定性变化很小, 掺杂原子与相邻的其他原子成键较弱.
    The mechanical properties of ultra-high strength martensite steel strongly depend on the shape, size and content of the reversed austenite. In general, the plasticity and toughness of the materials can be improved effectively by increasing the content of the reversed austenite. After aging treatment of Cu-bearing as-quenched steel with martensitic microstructure, Cu particles precipitate at the boundary of martensitic structure and act as heterogeneous nucleation sites to promote the nucleation of reversed austenite. In order to explore the effects of different alloying elements on heterogeneous nucleation of reversed austenite on Cu particles, the effects of X (X = Cr, Al, Mo, W, Ni, Co, Mn) on the interfacial properties of Cu/γ-Fe are studied via first-principles method. The adhesion work, interfacial energy and electronic structure of the interfaces before and after the replacement of Cu and Fe atoms at Cu/γ-Fe boundaries are calculated. The results show that when the alloying elements replace Cu atoms at the Cu/γ-Fe interface, strong X—Fe covalent bond forms at the Cu/γ-Fe interface, the adhesion work increases and the interfacial energy decreases, and thus improve the heterogeneous nucleation capability of reverted γ-Fe on Cu particles. When Fe atoms at the interface are replaced, the stability of the interface changes little, and the bonding between the doped atoms and the neighboring atoms is weak.
      通信作者: 杨永, yyang@ahut.edu.cn
    • 基金项目: 安徽省自然科学基金(批准号: 2108085QE214)和安徽省冶金工程与资源循环利用重点实验室开放基金(批准号: SKF19-02)资助的课题
      Corresponding author: Yang Yong, yyang@ahut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 2108085QE214) and the Open Fund of Anhui Provincial Key Laboratory of Metallurgical Engineering & Resources Recycling, China (Grant No. SKF19-02)
    [1]

    Garrison W M 1990 JOM 42 20Google Scholar

    [2]

    Skubisz P, Sinczak J 2018 Aircr. Eng. Aerosp. Technol. 90 713Google Scholar

    [3]

    Jia L J, Hui H B, Yu Q H, Song Y 2014 Adv. Mater. Res. 859 238Google Scholar

    [4]

    Mou B, Zhou W, Qiao Q, Feng P, Wu C 2021 Eng. Struct. 228 111483Google Scholar

    [5]

    Wang Y, Sun J, Jiang T, Jiang T, Sun Y, Guo S, Liu Y 2018 Acta Mater. 158 247Google Scholar

    [6]

    Zhao L, Chen X, Wu T, Zhai Q 2020 Materials. 13 4340Google Scholar

    [7]

    Zhou J H, Shen Y F, Hong Y Y, Xue W Y, Misra R D K 2020 Mater. Sci. Eng., A 769 138471Google Scholar

    [8]

    Malakondaiah G, Srinivas M, Murthy J M, Rao P R 1994 Bull. Mater. Sci. 17 73Google Scholar

    [9]

    Ayer R, Machmeier P M 1993 Metall. Trans. A 24 1943Google Scholar

    [10]

    Viswanathan U K, Dey G K, Sethumadhavan V 2005 Mater. Sci. Eng., A 398 367Google Scholar

    [11]

    Tomohiko H, Tomohiro K, Koh-ichi S 2010 Bull. Tsuy. Nat. Coll. Technol. 52 9

    [12]

    He Y, Yang K, Qu W, Kong F, Su G 2002 Mater. Lett. 56 763Google Scholar

    [13]

    Machmeier P, Matuszewski T, Jones R, Ayer R 1997 J. Mater. Eng. Perform. 6 279Google Scholar

    [14]

    Gruber M, Ressel G, F Méndez Martín, Ploberger S, Marsoner S, Ebner R 2016 Metall. Mater. Trans. A 47 1Google Scholar

    [15]

    Govindaraj V, Hodgson P, Singh R P, Beladi H 2021 Mater. Sci. Eng., A 808 140909Google Scholar

    [16]

    Huang D, Yan J, Zuo X 2019 Mater. Charact. 155 109786Google Scholar

    [17]

    Vanderbilt D 1990 Phys. Rev. B:Condens. Matter. 41 7892Google Scholar

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. lett. 77 3865Google Scholar

    [19]

    Bitter F, Kaufmann A R 1939 Phys. Rev. 56 1044Google Scholar

    [20]

    Li Y, Gao Y, Xiao B, Min T, Fan Z, Ma S, Yi D 2011 Comput. Mater. Sci. 50 939Google Scholar

    [21]

    Liu P, Han X, Sun D, Sun D, Chen Z, Wang Q 2018 Intermetallics 96 49Google Scholar

    [22]

    Lü Z, Xiao S, Xiao Z, Xiao S, Xiao Z, Qian L, Wang W, Zhou Y, Fu W 2017 J. Alloys Compd. 718 139Google Scholar

    [23]

    Yang G, Liu Y, Hang Z, Xi N, Fu H, Chen H 2019 J. Rare Earths 37 773Google Scholar

    [24]

    Sun M, Tang W, Ren Q, Wang S, Yu J, Du Y 2015 Appl. Surf. Sci. 356 110Google Scholar

    [25]

    Yang J, Huang J, Fan D, Chen S, Zhao X 2016 Appl. Surf. Sci. 384 207Google Scholar

    [26]

    Zhao X, Zhuo Y, Liu S, Zou Y, Zhao C, Wang C, Yang Q 2016 Surf. Coat. Technol. 305 200Google Scholar

    [27]

    Zhao X, Yuan X, Liu S, Zhao C, Wang C, Zhou Y, Yang Q 2017 J. Alloys Compd. 695 1753Google Scholar

    [28]

    Christensen M, Dudiy S, Wahnstrm G 2002 Phys. Rev. B 65 045408Google Scholar

    [29]

    Han Y F, Dai Y B, Wang J, Shu D, Sun B D 2011 Appl. Surf. Sci. 257 7831Google Scholar

    [30]

    Lu S, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B. 82 195103Google Scholar

    [31]

    Yang J, Zhang P, Zhou Y, Guo J, Ren X, Yang Y, Yang Q 2013 J. Alloys Compd. 556 160Google Scholar

    [32]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B:Condens. Matter. 54 16317Google Scholar

  • 图 1  (a) Cu(010)/γ-Fe(010)界面结构示意图; (b) Cu(010)/γ-Fe(010)界面侧视图

    Fig. 1.  (a) Schematic structure for Cu(010)/γ-Fe(010) interface; (b) side view for Cu(010)/γ-Fe(010) interface.

    图 2  (a) Cr替换Cu原子的Cu(010)/γ-Fe(010)界面结构示意图; (b) Cr替换Cu原子的Cu(010)/γ-Fe(010)界面侧视图

    Fig. 2.  (a) Schematic structure of Cr replacing Cu for Cu(010)/γ-Fe(010) interface; (b) side view of Cr replacing Cu for Cu(010)/γ-Fe(010) interface.

    图 3  (a) 合金元素替换Cu后Cu(010)/γ-Fe(010)界面的黏附功与界面能; (b) 合金元素替换Fe后Cu(010)/γ-Fe(010)界面的黏附功与界面能

    Fig. 3.  (a) Work of adhesion and interfacial energy for Cu(010)/γ-Fe(010) after replacing Cu atom; (b) work of adhesion and interfacial energy for Cu(010)/γ-Fe(010) after replacing Fe atom

    图 4  (a) 掺杂前界面的分波态密度; (b)—(h) Cr, Al, Mo, W, Ni, Co和Mn替换Cu原子后界面的分波态密度

    Fig. 4.  (a) Partial density of states on the interface for Cu(010)/γ-Fe(010) before doping; (b)–(h) partial density of states on the interface for Cu(010)/γ-Fe(010) after replacing Cu by Cr, Al, Mo, W, Ni, Co, and Mn, respectively.

    图 5  (a)掺杂前界面的分波态密度; (b)—(h) Cr, Al, Mo, W, Ni, Co和Mn替换Fe原子后界面的分波态密度

    Fig. 5.  (a) Partial density of states on the interface for Cu(010)/γ-Fe(010) before doping; (b)–(h) partial density of states on the interface for Cu(010)/γ-Fe(010) after replacing Fe by by Cr, Al, Mo, W, Ni, Co, and Mn, respectively.

    图 6  替换Cu原子前后Cu(010)/γ-Fe(010)界面差分电荷密度

    Fig. 6.  Difference charge density for Cu(010)/γ-Fe(010) interface before and after replacing Cu by different alloy atoms.

    表 1  Cu(010)和γ-Fe(010)表面能收敛趋势

    Table 1.  Convergence of Cu(010) and γ-Fe(010) surface energy.

    Number of pils N$ {E}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}}^{\mathrm{C}\mathrm{u}} $/(J·m–2)$ {E}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}}^{\mathrm{F}\mathrm{e}} $/(J·m–2)
    51.413.79
    71.443.75
    91.433.76
    111.443.75
    下载: 导出CSV

    表 2  合金元素X替换Cu前后界面布居分析

    Table 2.  Mulliken population analysis on the interface for Cu(010)/γ-Fe(010) before and after replacement of Cu by alloying element X

    AtomTotal electron/eTransfer charge/eAtomTotal electron/eTransfer charge/e
    Cu11.14–0.14Fe7.900.10
    Cr13.760.24Fe7.970.03
    Al2.890.11Fe8.04–0.04
    Mo13.730.27Fe8.03–0.03
    W8.01–0.01Fe13.920.08
    Ni9.830.17Fe7.980.02
    Co8.740.26Fe7.960.04
    Mn6.550.45Fe8.000
    下载: 导出CSV

    表 3  合金元素X替换Cu和Fe前后界面原子键长

    Table 3.  Bond length on the interface for Cu(010)/γ-Fe(010) before and after replacement of Cu or Fe by alloying element X

    键长/Å键长/Å
    Cu—Fe2.42Cu—Fe2.42
    Cr—Fe2.06Cr—Cu2.48
    Al—Fe2.39Al—Cu2.53
    Mo—Fe2.23Mo—Cu2.57
    W—Fe2.28W—Cu2.57
    Ni—Fe2.31Ni—Cu2.48
    Co—Fe2.20Co—Cu2.41
    Mn—Fe2.13Mn—Cu2.47
    下载: 导出CSV

    表 4  合金元素X替换Fe前后界面布居分析

    Table 4.  Mulliken population analysis on the interface for Cu(010)/γ-Fe(010) before and after replacement of Fe by alloying element X atom.

    AtomTotal electron/eTransfer charge/eAtomTotal electron/eTransfer charge/e
    Fe7.900.10Cu11.14–0.14
    Cr13.860.14Cu11.10–0.10
    Al3.03–0.03Cu11.11–0.11
    Mo13.900.10Cu11.20–0.20
    W14.09–0.09Cu11.19–0.19
    Ni11.04–0.04Cu11.10–0.10
    Co8.940.06Cu11.12–0.12
    Mn6.670.33Cu11.18–0.18
    下载: 导出CSV
  • [1]

    Garrison W M 1990 JOM 42 20Google Scholar

    [2]

    Skubisz P, Sinczak J 2018 Aircr. Eng. Aerosp. Technol. 90 713Google Scholar

    [3]

    Jia L J, Hui H B, Yu Q H, Song Y 2014 Adv. Mater. Res. 859 238Google Scholar

    [4]

    Mou B, Zhou W, Qiao Q, Feng P, Wu C 2021 Eng. Struct. 228 111483Google Scholar

    [5]

    Wang Y, Sun J, Jiang T, Jiang T, Sun Y, Guo S, Liu Y 2018 Acta Mater. 158 247Google Scholar

    [6]

    Zhao L, Chen X, Wu T, Zhai Q 2020 Materials. 13 4340Google Scholar

    [7]

    Zhou J H, Shen Y F, Hong Y Y, Xue W Y, Misra R D K 2020 Mater. Sci. Eng., A 769 138471Google Scholar

    [8]

    Malakondaiah G, Srinivas M, Murthy J M, Rao P R 1994 Bull. Mater. Sci. 17 73Google Scholar

    [9]

    Ayer R, Machmeier P M 1993 Metall. Trans. A 24 1943Google Scholar

    [10]

    Viswanathan U K, Dey G K, Sethumadhavan V 2005 Mater. Sci. Eng., A 398 367Google Scholar

    [11]

    Tomohiko H, Tomohiro K, Koh-ichi S 2010 Bull. Tsuy. Nat. Coll. Technol. 52 9

    [12]

    He Y, Yang K, Qu W, Kong F, Su G 2002 Mater. Lett. 56 763Google Scholar

    [13]

    Machmeier P, Matuszewski T, Jones R, Ayer R 1997 J. Mater. Eng. Perform. 6 279Google Scholar

    [14]

    Gruber M, Ressel G, F Méndez Martín, Ploberger S, Marsoner S, Ebner R 2016 Metall. Mater. Trans. A 47 1Google Scholar

    [15]

    Govindaraj V, Hodgson P, Singh R P, Beladi H 2021 Mater. Sci. Eng., A 808 140909Google Scholar

    [16]

    Huang D, Yan J, Zuo X 2019 Mater. Charact. 155 109786Google Scholar

    [17]

    Vanderbilt D 1990 Phys. Rev. B:Condens. Matter. 41 7892Google Scholar

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. lett. 77 3865Google Scholar

    [19]

    Bitter F, Kaufmann A R 1939 Phys. Rev. 56 1044Google Scholar

    [20]

    Li Y, Gao Y, Xiao B, Min T, Fan Z, Ma S, Yi D 2011 Comput. Mater. Sci. 50 939Google Scholar

    [21]

    Liu P, Han X, Sun D, Sun D, Chen Z, Wang Q 2018 Intermetallics 96 49Google Scholar

    [22]

    Lü Z, Xiao S, Xiao Z, Xiao S, Xiao Z, Qian L, Wang W, Zhou Y, Fu W 2017 J. Alloys Compd. 718 139Google Scholar

    [23]

    Yang G, Liu Y, Hang Z, Xi N, Fu H, Chen H 2019 J. Rare Earths 37 773Google Scholar

    [24]

    Sun M, Tang W, Ren Q, Wang S, Yu J, Du Y 2015 Appl. Surf. Sci. 356 110Google Scholar

    [25]

    Yang J, Huang J, Fan D, Chen S, Zhao X 2016 Appl. Surf. Sci. 384 207Google Scholar

    [26]

    Zhao X, Zhuo Y, Liu S, Zou Y, Zhao C, Wang C, Yang Q 2016 Surf. Coat. Technol. 305 200Google Scholar

    [27]

    Zhao X, Yuan X, Liu S, Zhao C, Wang C, Zhou Y, Yang Q 2017 J. Alloys Compd. 695 1753Google Scholar

    [28]

    Christensen M, Dudiy S, Wahnstrm G 2002 Phys. Rev. B 65 045408Google Scholar

    [29]

    Han Y F, Dai Y B, Wang J, Shu D, Sun B D 2011 Appl. Surf. Sci. 257 7831Google Scholar

    [30]

    Lu S, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B. 82 195103Google Scholar

    [31]

    Yang J, Zhang P, Zhou Y, Guo J, Ren X, Yang Y, Yang Q 2013 J. Alloys Compd. 556 160Google Scholar

    [32]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B:Condens. Matter. 54 16317Google Scholar

  • [1] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [2] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] 代广珍, 姜永召, 倪天明, 刘鑫, 鲁麟, 刘琦. 变组分Al对HfO2阻变特性影响: 第一性原理研究. 物理学报, 2019, 68(11): 113101. doi: 10.7498/aps.68.20181995
    [5] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [6] 熊辉辉, 刘昭, 张恒华, 周阳, 俞园. 合金元素对钢中NbC异质形核影响的第一性原理研究. 物理学报, 2017, 66(16): 168101. doi: 10.7498/aps.66.168101
    [7] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [8] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [9] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [10] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [11] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [12] 李忠虎, 李林, 朱林. W形六角铁氧体BaFe18O27电子结构与导电性的第一性原理研究. 物理学报, 2011, 60(10): 107102. doi: 10.7498/aps.60.107102
    [13] 郑浩勇, 王猛, 王修星, 黄卫东. 基于Wenzel模型的粗糙界面异质形核分析. 物理学报, 2011, 60(6): 066402. doi: 10.7498/aps.60.066402
    [14] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究. 物理学报, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [15] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究. 物理学报, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [16] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [17] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [18] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [19] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  2455
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2021-12-25
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回