搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆架斜坡海域上坡波导环境中声能量急剧下降现象及其定量分析

谢磊 孙超 刘雄厚 蒋光禹 孔德智

引用本文:
Citation:

陆架斜坡海域上坡波导环境中声能量急剧下降现象及其定量分析

谢磊, 孙超, 刘雄厚, 蒋光禹, 孔德智

Investigation and quantitative analysis on the acoustic energy tobogganing in the upslope waveguide of continental slope area

Xie Lei, Sun Chao, Liu Xiong-Hou, Jiang Guang-Yu, Kong De-Zhi
PDF
导出引用
  • 深度较浅的声源其辐射声波在陆架斜坡海域上坡传播时,在斜坡顶端会出现声能量急剧下降现象.利用射线声学模型分析了造成这一现象的原因,并根据抛物方程声场模型计算的深海和浅海平均传播损失定义了声能量急剧下降距离,定量分析了声源位置对该现象的影响.结果表明:声源深度对声能量急剧下降距离影响较大,而声源与斜坡底端水平距离对其影响较小;当声源深度变大时,部分掠射角较小的声线最终能够达到斜坡顶端,致使声能量急剧下降距离增大,继续增加声源深度,将导致上坡声能量急剧下降现象消失.利用抛物方程声场模型对陆架斜坡海域上坡声传播进行数值仿真,结合声能量急剧下降距离的定义,计算并比较了声源位置不同时该距离的变化,数值计算结果验证了理论分析.
    The toboggan in acoustic energy will appear at the top of the slope when the sound wave radiated by a shallow water source propagates in an upslope waveguide of the continental slope area. The grazing angles of the sound rays reflected by the ocean bottom will increase in the upslope waveguide, which leads to the acoustic energy tobogganing in the shallow water at the top of the slope. In this paper, the range of acoustic energy tobogganing (RAET) at a specified depth is defined to study this phenomenon. The transmission loss (TL) is calculated by the parabolic-equation acoustic model that ie applied to the range-dependent waveguide. The RAET is defined by an average transmission loss in the abyssal water and in the shallow water corresponding to the depth. The acoustic energy toboggan is explained using the ray-based model, and the effects of source location change on it are demonstrated, including the source depth and the range away from the bottom of the slope. The sound rays from a shallow water source which transmit in the upslope waveguide can be divided into two types:one is incident to the interface vertically and will return to the water along the original path; the other is that the rays will transmit towards the sound source (the deep sea direction). However, all of them will no longer spread forward after they have transmitted to a certain distance, leading to the acoustic energy tobogganing in shallow water. The analysis results show that the RAET becomes larger with source depth increasing, and the energy toboggan phenomenon will disappear when the source is deep enough. However, the range of source away from the slope bottom has less effect on RAET. Numerical simulations are conducted in a continental upslope environment by the RAM program based on the split-step Pad algorithm for the parabolic equation. The simulation results show as follows. 1) The TL will increase rapidly after the waves have transmitted to a certain range away from the bottom of the slope when the source depth is 110 m, and the TLs is 140-160 dB propagating to the shallow water at the top of the slope. 2) The RAET will enlarge orderly when the source depths are 110 m, 550 m and 800 m respectively, and the energy toboggan phenomenon will disappear when the source depth is more than 800 m. 3) Fix the source depth at 110 m and move it along the deep sea, then the RAET will greatly varies when the distance between the source and the slope bottom changes ina range of 1-15 km. However, the RAET remain almost constant at 69.8 km when the distance between the source and the slope bottom changes in a range of 16-50 km.
      通信作者: 孙超, csun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11534009)资助的课题.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11534009).
    [1]

    Xie L, Sun C, Liu X H, Jiang G Y 2016 Acta Phys. Sin. 65 144303 (in Chinese)[谢磊, 孙超, 刘雄厚, 蒋光禹 2016 物理学报 65 144303]

    [2]

    Rutherford S R 1979 J. Acoust. Soc. Am. 66 1482

    [3]

    Pierce A D 1965 J. Acoust. Soc. Am. 37 19

    [4]

    Miller J F, Nagl A, Uberall H 1986 J. Acoust. Soc. Am. 79 562

    [5]

    Jensen F B, Kuperman W A 1980 J. Acoust. Soc. Am. 67 1564

    [6]

    Jensen F B, Tindle C T 1987 J. Acoust. Soc. Am. 82 211

    [7]

    Pierce A D 1982 J. Acoust. Soc. Am. 72 523

    [8]

    Graves R D, Nagl A, Uberall H, Zarur G L 1975 J. Acoust. Soc. Am. 58 1171

    [9]

    Nagl A, Uberall H, Haug A J, Zarur G L 1978 J. Acoust. Soc. Am. 63 739

    [10]

    Milder D M 1969 J. Acoust. Soc. Am. 46 1259

    [11]

    Wang N, Huang X S 2001 Sci. Sin. Ser. A 9 857 (in Chinese)[王宁, 黄晓圣 2001 中国科学(A辑) 9 857]

    [12]

    Arnold J M, Felsen L B 1983 J. Acoust. Soc. Am. 73 1105

    [13]

    Rousseau T H, Jacobson W L 1985 J. Acoust. Soc. Am. 78 1713

    [14]

    Carey W M, Gereben I B 1987 J. Acoust. Soc. Am. 81 244

    [15]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [16]

    Carey W M 1986 J. Acoust. Soc. Am. 79 49

    [17]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese)[秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [18]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York:AIP Press/Springer) p326

    [19]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

  • [1]

    Xie L, Sun C, Liu X H, Jiang G Y 2016 Acta Phys. Sin. 65 144303 (in Chinese)[谢磊, 孙超, 刘雄厚, 蒋光禹 2016 物理学报 65 144303]

    [2]

    Rutherford S R 1979 J. Acoust. Soc. Am. 66 1482

    [3]

    Pierce A D 1965 J. Acoust. Soc. Am. 37 19

    [4]

    Miller J F, Nagl A, Uberall H 1986 J. Acoust. Soc. Am. 79 562

    [5]

    Jensen F B, Kuperman W A 1980 J. Acoust. Soc. Am. 67 1564

    [6]

    Jensen F B, Tindle C T 1987 J. Acoust. Soc. Am. 82 211

    [7]

    Pierce A D 1982 J. Acoust. Soc. Am. 72 523

    [8]

    Graves R D, Nagl A, Uberall H, Zarur G L 1975 J. Acoust. Soc. Am. 58 1171

    [9]

    Nagl A, Uberall H, Haug A J, Zarur G L 1978 J. Acoust. Soc. Am. 63 739

    [10]

    Milder D M 1969 J. Acoust. Soc. Am. 46 1259

    [11]

    Wang N, Huang X S 2001 Sci. Sin. Ser. A 9 857 (in Chinese)[王宁, 黄晓圣 2001 中国科学(A辑) 9 857]

    [12]

    Arnold J M, Felsen L B 1983 J. Acoust. Soc. Am. 73 1105

    [13]

    Rousseau T H, Jacobson W L 1985 J. Acoust. Soc. Am. 78 1713

    [14]

    Carey W M, Gereben I B 1987 J. Acoust. Soc. Am. 81 244

    [15]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [16]

    Carey W M 1986 J. Acoust. Soc. Am. 79 49

    [17]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese)[秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [18]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York:AIP Press/Springer) p326

    [19]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

  • [1] 金江明, 谢添伟, 程昊, 肖岳鹏, D.Michael McFarland, 卢奂采. Duffing振子型结构声系统中声能量非互易传递的建模和实验研究. 物理学报, 2022, 71(10): 104301. doi: 10.7498/aps.71.20212181
    [2] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [3] 时胜国, 高塬, 张昊阳, 杨博全. 基于单元辐射叠加法的结构声源声场重建方法. 物理学报, 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [4] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计. 物理学报, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [5] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [6] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响. 物理学报, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [7] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [8] 章春来, 刘春明, 向霞, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 形状与位置对断点划痕场分布的影响研究. 物理学报, 2012, 61(16): 164207. doi: 10.7498/aps.61.164207
    [9] 杨殿阁, 李兵, 王子腾, 连小珉. 运动声源识别的动态波叠加方法研究. 物理学报, 2012, 61(5): 054306. doi: 10.7498/aps.61.054306
    [10] 弓巧侠, 赵双双, 段智勇, 马凤英. 结构参量对左手材料通带位置影响的研究. 物理学报, 2011, 60(10): 107804. doi: 10.7498/aps.60.107804
    [11] 陈志敏, 朱海潮, 毛荣富. 循环平稳声场的声源定位研究. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
    [12] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性. 物理学报, 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [13] 林力, 李云, 顾兆林, 刘兆杰, 程光旭. 计算二维声腔传递矩阵的正方形线声源模型. 物理学报, 2009, 58(8): 5484-5490. doi: 10.7498/aps.58.5484
    [14] 程桂平, 郑 俊, 邓文武, 李高翔. 反馈法定位两原子之间的相对位置. 物理学报, 2008, 57(1): 212-218. doi: 10.7498/aps.57.212
    [15] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响. 物理学报, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [16] 高绪团, 傅 雪, 宋 骏, 刘德胜, 解士杰. 位置涨落对DNA分子电子结构的影响. 物理学报, 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [17] 钱盛友, 王鸿樟. 聚焦超声源对生物媒质加热的理论研究. 物理学报, 2001, 50(3): 501-506. doi: 10.7498/aps.50.501
    [18] 成之绪, 程玉芬, 张泮霖, 严启伟. 用中子衍射测定DTGS晶体中氘原子的位置. 物理学报, 1986, 35(5): 643-652. doi: 10.7498/aps.35.643
    [19] 钱祖文, 施修祥, 赵春生, 吕凤玲, 王晓霞. 圆形活塞声源的有限振幅反射波. 物理学报, 1983, 32(9): 1109-1117. doi: 10.7498/aps.32.1109
    [20] 马大猷. 调制气流声源的原理. 物理学报, 1974, 23(1): 17-26. doi: 10.7498/aps.23.17
计量
  • 文章访问数:  6297
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-20
  • 修回日期:  2017-07-04
  • 刊出日期:  2017-10-05

/

返回文章
返回