搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺钕微球的受激辐射激光和自受激拉曼散射

黄衍堂 彭隆祥 庄世坚 李强龙 廖廷俤 许灿华 段亚凡

引用本文:
Citation:

掺钕微球的受激辐射激光和自受激拉曼散射

黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡

Stimulated lasing and self-excited stimulated Raman scattering of Nd3+ doped silica microsphere pumped by 808 nm laser

Huang Yan-Tang, Peng Long-Xiang, Zhuang Shi-Jian, Li Qiang-Long, Liao Ting-Di, Xu Can-Hua, Duan Ya-Fan
PDF
导出引用
  • 采用溶胶-凝胶法在SiO2微球表面覆盖上一薄层Nd3+掺杂SiO2,并经电极放电熔融后形成表面光滑的高Q值微球.采用锥光纤将808 nm的抽运激光耦合入钕离子掺杂的高Q值微球形成回廊模,激发产生了1080–1097 nm波段受激辐射激光.由于所产生的激光有足够高的功率密度,在高Q SiO2微球中激发产生了波长为1120–1143 nm一级自受激拉曼散射激光.推导了锥光纤掺钕微球组合的自受激拉曼散射的输出功率和阈值公式.描述了输出激光的特性:阈值、输出功率、线宽、边模抑制比.
    Self-stimulated Raman lasers have attracted more and more interest, because they have no need of additional Raman device, and they are compact in structure and also economical in cost. Self-stimulated Raman lasers are always emitted from crystalline mediums such as Nd3+:KGd(WO4)2, Nd3+:PbWO4 that are commonly used as laser host materials and proved to be available Raman-active mediums. The Nd3+ doped crystals possess high stimulated emission cross-section for laser emission and high Raman gain coefficients for Raman transitions, but the required pump powers (typically hundreds of milliwatts) are large in those experiments.The whispering-gallery mode (WGM) of silica microsphere cavity has achieved the highest Q factor (8×109) to date. The high Q factor and small mode volume make it possible to realize a resonant buildup of high circulating optical intensities, thereby drastically reducing the threshold powers for laser oscillation and stimulated nonlinear process. The coupler with optical fiber taper allows the excitation of WGMs with ultralow coupling loss, which significantly improves the overall efficiency to produce stimulated Raman laser. In this paper, we report the observation of ultralow threshold self-stimulated Raman laser operating in an Nd3+ doped silica microsphere, and the wavelength range can be extended to O-waveband 1143 nm.A high Q microsphere is fabricated with a thin Nd3+ doped silica layer covered by sol-gel method, in which smooth surface is formed by electrical arc-heating. An optical taper fiber is employed to couple the 808 nm laser into Nd3+ doped microsphere (NDSM) to form whispering gallery mode, which acts as the pump light. Based on 4f electron of neodymium ion transmission and optical oscillation in microsphere, the stimulated laser with a wavelength band of 1080 nm-1097 nm is excited. Due to high power density of the excited laser near the surface of orbit in microsphere, the first order self-stimulated Raman laser with a wavelength range of 1120-1143 nm is stimulated in the high Q microsphere. In a theoretical model, the formulas for calculating the output power and the threshold power of the oscillation laser and the self-stimulated Raman scattering are derived. In experiment, we succeed in getting single-mode and multi-mode laser oscillation due to the 4f layer electron transitions of Nd3+ ions, pumped by 808 nm laser. The results show that the NDSM emits a typical single-mode output laser at 1116.8 nm with a pump power of 8.33 dBm, also the relationship between the 1116.8 nm output power and the pump power with a threshold pump power of 3.5 mW. The multi-mode laser spectrum dependent on the microsphere morphology characteristics is observed, which varies by changing the couple position of the optical fiber taper with microsphere. The characteristics of the laser are discussed including the output power, threshold power, spectral line width, side-mode suppression ratio, etc. The NDSM will have many potential applications in new compact lasers. It is beneficial to wavelength converter and optical amplifier in O band.
      通信作者: 黄衍堂, huangyantang@fzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61405059)资助的课题.
      Corresponding author: Huang Yan-Tang, huangyantang@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405059).
    [1]

    Han L, Song F, Wan C S, Zou C G, Yan L H, Zhang K, Tian J G 2007 Acta Phys. Sin. 56 1751 (in Chinese) [韩琳, 宋峰, 万从尚, 邹昌光, 闫立华, 张康, 田建国 2007 物理学报 56 1751]

    [2]

    Cong Z H, Liu Z J, Qin Z G, Zhang X Y, Zhang H J, Li J, Yu H H, Wang Q T 2015 Opt. Laser Technol. 73 50

    [3]

    Cai W Y, Dun Y M, Li J T, Yan L F, Mao M J, Zhao B, Zhu H Y 2015 Chin. Phys. Lett. 32 034206

    [4]

    Su F F, Zhang X Y, Wang Q P, Wu F Q, Li S T, Zhang X L, Cong Z H 2008 Opt. Mater. 30 1895

    [5]

    Deng J, Lin J P, Huang J H, Zheng H, Lin J H, Shi F, Dai S T, Weng W, Kang Z J, Jinag X, Liu J, Lin W X 2010 Chin. Opt. Lett. 8 293

    [6]

    Lee A J, Pask H M, Spence D J, Piper J A 2010 Opt. Lett. 35 682

    [7]

    Su F F, Zhang X Y, Wang Q P, Jia P, Li S T, Liu B, Zhang X L, Cong Z H, Wu F Q 2007 Opt. Commun. 277 379

    [8]

    Basiev T T, Vassiliev S V, Doroshenko M E, Osiko V V 2006 Opt. Lett. 31 65

    [9]

    Simons J, Pask H, Dekker P, Piper J A 2002 Proc. SPIE 57 4630

    [10]

    Chen Y F 2004 Opt. Lett. 29 1251

    [11]

    Chen Y F 2004 Opt. Lett. 29 2632

    [12]

    Su F F, Zhang X Y, Wang Q P, Ding S H, Jia P, Li S T, Fan S Z, Zhang C, Liu B 2006 J. Phys. D 39 2090

    [13]

    Min B, Kippenberg T J, Yang L, Vahala K J 2004 Phys. Rev. A 70 033803

    [14]

    Ostby E P, Yang L, Vahala K J 2007 Opt. Lett. 32 2650

    [15]

    Yang L, Armani D K, Vahala K J 2003 Appl. Phys. Lett. 83 825

    [16]

    Yang L, Carmon T, Min B, Spillane S M, Vahala K J 2005 Appl. Phys. Lett. 86 091114

    [17]

    Wu T J, Huang Y T, Huang J, Huang Y, Zhang P J, Ma J 2014 Appl. Opt. 53 4747

    [18]

    Li Q L, Huang Y T, Lin Y J, Wu J S, Huang J, Wu T J 2015 Opt. Commun. 356 368

    [19]

    Guo C L, Huang Y, Zhang P J, Huang Y T 2013 Chin. J. Lasers 40 0302004 (in Chinese) [郭长磊, 黄玉, 张培进, 黄衍堂 2013 中国激光 40 0302004]

    [20]

    Jiang X F, Xiao Y F, Yang Q F, Shao L B, Clements W R, Gong Q G 2013 Appl. Phys. Lett. 103 101102

    [21]

    Min B, Kippenberg T J, Vahala K J 2003 Opt. Lett. 28 1507

    [22]

    Kippenberg T J, Spillane S M, Min B, Vahala K J 2004 IEEE J. Sel. Top. Quant. 10 1219

    [23]

    Kippenberg T J, Spillane S M, Armani D K, Vahala K J 2004 Opt. Lett. 29 1224

    [24]

    Spillane S M, Kippenberg T J, Vahala K J 2002 Nature 415 621

    [25]

    Zhang P J, Huang Y, Guo C L, Huang Y T 2013 Acta Phys. Sin. 62 224207 (in Chinese) [张培进, 黄玉, 郭长磊, 黄衍堂 2013 物理学报 62 224207]

    [26]

    Huang Y, Zhang P J, Guo C L, Huang Y T 2013 IEEE Photon. Tech. Lett. 25 1385

    [27]

    Takao A, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J, Kimble H J 2009 Appl. Phys. Lett. 102 083601

    [28]

    Alton D J, Stern N P, Takao A, Lee H, Ostby E, Vahala K J, Kimble H J 2011 Nat. Phys. 7 159

    [29]

    Barak D, Parkins A S, Takao A, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [30]

    Wang X H, Bao R Y, Huang Y T 2011 Inter. J. Theor. Phys. 50 473

    [31]

    Bao R Y, Wang X H, Huang Y T 2010 Chin. Phys. Lett. 27 083101

    [32]

    Li B B, Clements W R, Yu X C, Shi K B, Gong Q H, Xiao Y F 2014 Proc. Natl. Acad. Sci. USA 111 14657

    [33]

    Armani A M, Armani D K, Min B, Vahala K J, Spillane S M 2005 Appl. Phys. Lett. 87 151118

    [34]

    Cai Z P, Xu H Y 2003 Sens. Actuators A: Phys. 108 187

    [35]

    Guo C L, Che K J, Zhang P, Wu J S, Huang Y T, Xu H Y, Cai Z P 2015 Opt. Express 23 32261

    [36]

    Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 217805 (in Chinese) [吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊 2014 物理学报 63 217805]

    [37]

    Huang Y T, Huang Y, Zhang P J, Guo C L 2014 AIP Adv. 4 027113

  • [1]

    Han L, Song F, Wan C S, Zou C G, Yan L H, Zhang K, Tian J G 2007 Acta Phys. Sin. 56 1751 (in Chinese) [韩琳, 宋峰, 万从尚, 邹昌光, 闫立华, 张康, 田建国 2007 物理学报 56 1751]

    [2]

    Cong Z H, Liu Z J, Qin Z G, Zhang X Y, Zhang H J, Li J, Yu H H, Wang Q T 2015 Opt. Laser Technol. 73 50

    [3]

    Cai W Y, Dun Y M, Li J T, Yan L F, Mao M J, Zhao B, Zhu H Y 2015 Chin. Phys. Lett. 32 034206

    [4]

    Su F F, Zhang X Y, Wang Q P, Wu F Q, Li S T, Zhang X L, Cong Z H 2008 Opt. Mater. 30 1895

    [5]

    Deng J, Lin J P, Huang J H, Zheng H, Lin J H, Shi F, Dai S T, Weng W, Kang Z J, Jinag X, Liu J, Lin W X 2010 Chin. Opt. Lett. 8 293

    [6]

    Lee A J, Pask H M, Spence D J, Piper J A 2010 Opt. Lett. 35 682

    [7]

    Su F F, Zhang X Y, Wang Q P, Jia P, Li S T, Liu B, Zhang X L, Cong Z H, Wu F Q 2007 Opt. Commun. 277 379

    [8]

    Basiev T T, Vassiliev S V, Doroshenko M E, Osiko V V 2006 Opt. Lett. 31 65

    [9]

    Simons J, Pask H, Dekker P, Piper J A 2002 Proc. SPIE 57 4630

    [10]

    Chen Y F 2004 Opt. Lett. 29 1251

    [11]

    Chen Y F 2004 Opt. Lett. 29 2632

    [12]

    Su F F, Zhang X Y, Wang Q P, Ding S H, Jia P, Li S T, Fan S Z, Zhang C, Liu B 2006 J. Phys. D 39 2090

    [13]

    Min B, Kippenberg T J, Yang L, Vahala K J 2004 Phys. Rev. A 70 033803

    [14]

    Ostby E P, Yang L, Vahala K J 2007 Opt. Lett. 32 2650

    [15]

    Yang L, Armani D K, Vahala K J 2003 Appl. Phys. Lett. 83 825

    [16]

    Yang L, Carmon T, Min B, Spillane S M, Vahala K J 2005 Appl. Phys. Lett. 86 091114

    [17]

    Wu T J, Huang Y T, Huang J, Huang Y, Zhang P J, Ma J 2014 Appl. Opt. 53 4747

    [18]

    Li Q L, Huang Y T, Lin Y J, Wu J S, Huang J, Wu T J 2015 Opt. Commun. 356 368

    [19]

    Guo C L, Huang Y, Zhang P J, Huang Y T 2013 Chin. J. Lasers 40 0302004 (in Chinese) [郭长磊, 黄玉, 张培进, 黄衍堂 2013 中国激光 40 0302004]

    [20]

    Jiang X F, Xiao Y F, Yang Q F, Shao L B, Clements W R, Gong Q G 2013 Appl. Phys. Lett. 103 101102

    [21]

    Min B, Kippenberg T J, Vahala K J 2003 Opt. Lett. 28 1507

    [22]

    Kippenberg T J, Spillane S M, Min B, Vahala K J 2004 IEEE J. Sel. Top. Quant. 10 1219

    [23]

    Kippenberg T J, Spillane S M, Armani D K, Vahala K J 2004 Opt. Lett. 29 1224

    [24]

    Spillane S M, Kippenberg T J, Vahala K J 2002 Nature 415 621

    [25]

    Zhang P J, Huang Y, Guo C L, Huang Y T 2013 Acta Phys. Sin. 62 224207 (in Chinese) [张培进, 黄玉, 郭长磊, 黄衍堂 2013 物理学报 62 224207]

    [26]

    Huang Y, Zhang P J, Guo C L, Huang Y T 2013 IEEE Photon. Tech. Lett. 25 1385

    [27]

    Takao A, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J, Kimble H J 2009 Appl. Phys. Lett. 102 083601

    [28]

    Alton D J, Stern N P, Takao A, Lee H, Ostby E, Vahala K J, Kimble H J 2011 Nat. Phys. 7 159

    [29]

    Barak D, Parkins A S, Takao A, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [30]

    Wang X H, Bao R Y, Huang Y T 2011 Inter. J. Theor. Phys. 50 473

    [31]

    Bao R Y, Wang X H, Huang Y T 2010 Chin. Phys. Lett. 27 083101

    [32]

    Li B B, Clements W R, Yu X C, Shi K B, Gong Q H, Xiao Y F 2014 Proc. Natl. Acad. Sci. USA 111 14657

    [33]

    Armani A M, Armani D K, Min B, Vahala K J, Spillane S M 2005 Appl. Phys. Lett. 87 151118

    [34]

    Cai Z P, Xu H Y 2003 Sens. Actuators A: Phys. 108 187

    [35]

    Guo C L, Che K J, Zhang P, Wu J S, Huang Y T, Xu H Y, Cai Z P 2015 Opt. Express 23 32261

    [36]

    Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 217805 (in Chinese) [吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊 2014 物理学报 63 217805]

    [37]

    Huang Y T, Huang Y, Zhang P J, Guo C L 2014 AIP Adv. 4 027113

  • [1] 曾嘉乐, 练昌旺, 季雨, 闫锐. 间接驱动相关条件下的大空间尺度对流受激拉曼侧向散射. 物理学报, 2024, 73(10): 105202. doi: 10.7498/aps.73.20240045
    [2] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [3] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] 蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新. 高品质激光尾波场电子加速器. 物理学报, 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [5] 黎明, 杨兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王建新, 罗星, 周奎, 劳成龙, 闫陇刚, 林司芬, 张鹏, 张浩, 和天慧, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李凯, 陈亚男. 太赫兹自由电子激光的受激饱和实验. 物理学报, 2018, 67(8): 084102. doi: 10.7498/aps.67.20172413
    [6] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变. 物理学报, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [7] 张培进, 黄玉, 郭长磊, 黄衍堂. 976 nm激光抽运二氧化硅微球级联拉曼散射激光的研究. 物理学报, 2013, 62(22): 224207. doi: 10.7498/aps.62.224207
    [8] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [9] 陈翔, 米贤武. 二能级原子与高品质因子腔的自发辐射特性. 物理学报, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [10] 韩 琳, 宋 峰, 万从尚, 邹昌光, 闫立华, 张 康, 田建国. 自受激拉曼晶体Nd3+:SrMoO4的光谱性质研究. 物理学报, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [11] 陶宗明, 张寅超, 吕勇辉, 胡顺星, 邵石生, 曹开法, 刘小勤, 岳古明, 胡欢陵. Nd:YAG四倍频激光抽运甲烷后的受激拉曼效应及其物理机制分析. 物理学报, 2004, 53(8): 2589-2594. doi: 10.7498/aps.53.2589
    [12] 张家泰, 许林宝, 常铁强, 张书贵, 聂小波, 王世红, 汪卫星. 激光靶等离子体受激Raman散射. 物理学报, 1991, 40(10): 1642-1651. doi: 10.7498/aps.40.1642
    [13] 沈书泊. 光纤中受激四光子混频和受激喇曼散射的联合效应. 物理学报, 1990, 39(4): 526-530. doi: 10.7498/aps.39.526
    [14] 蒋华北. 受激渡越辐射光学速调管. 物理学报, 1990, 39(1): 61-66. doi: 10.7498/aps.39.61-2
    [15] 单军, 林金谷, 佘永柏, 金佩, 傅克坚, 张志三. 紫外激光离解四氯化钛产生的钛原子的受激喇曼散射. 物理学报, 1990, 39(5): 754-763. doi: 10.7498/aps.39.754
    [16] 刘盛纲, 孙雁. 渡越辐射自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
    [17] 张毅波. 切伦科夫自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
    [18] 孟绍贤, 张伟清, 林礼煌, 林尊琪, 盛国平, 谢梓铭, 康玉英. 准稳态受激喇曼散射的时间特性. 物理学报, 1985, 34(9): 1220-1223. doi: 10.7498/aps.34.1220
    [19] 张富根. 圆偏振氟化氪激光在氢气中的前向受激喇曼散射. 物理学报, 1983, 32(9): 1211-1214. doi: 10.7498/aps.32.1211
    [20] 吴存恺, 范俊颖, 王志英. 高效率受激喇曼散射源. 物理学报, 1980, 29(5): 588-593. doi: 10.7498/aps.29.588
计量
  • 文章访问数:  6108
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-23
  • 修回日期:  2017-07-18
  • 刊出日期:  2017-12-05

/

返回文章
返回