搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆形复合式磁控溅射阴极设计及其放电特性模拟研究

汪天龙 邱清泉 靖立伟 张小波

引用本文:
Citation:

圆形复合式磁控溅射阴极设计及其放电特性模拟研究

汪天龙, 邱清泉, 靖立伟, 张小波

Design of circular composite sputtering cathode and simulation of its discharge characteristics

Wang Tian-Long, Qiu Qing-Quan, Jing Li-Wei, Zhang Xiao-Bo
PDF
导出引用
  • 基于二维有限元算法使用COMSOL软件对圆形复合式磁控溅射阴极的磁场进行了计算,结合Matlab优化工具箱分别采用遗传算法和模拟退火算法对圆形复合式磁控溅射阴极的结构进行优化,得到靶材利用率达到最大的最优结构.对得到的最优化磁控阴极,基于自洽粒子模拟方法,使用VSim软件对不同工况下的放电特性进行了模拟.研究发现随着磁场非平衡度的增加,阴极表面电势降落最大的位置和等离子体聚集的位置,沿着阴极表面外沿不断向阴极中心移动,阴极表面磁场的强度不断减小.随着磁场非平衡度的增加,等离子体密度先增加后减小,鞘层厚度先减小后增加,等离子体的密度和鞘层厚度不仅与磁场非平衡度有关,而且与磁场强度有关.最后根据粒子模拟的结果,对复合式磁控阴极的靶材刻蚀深度进行了研究.研究发现,在优化前后靶材的刻蚀范围从60 mm扩展至整个靶面,极大地提高了靶材利用率.
    Based on the two-dimensional finite element method, the magnetic field of circular composite magnetron sputtering cathode is calculated by COMSOL software. The genetic algorithm and simulated annealing algorithm combined with Matlab optimization toolbox are used to optimize the structure of circular composite magnetron sputtering cathode, and the structural parameters with the largest utilization rate of target are obtained. For the resulting optimized magnetron cathode, based on the self-consistent particle simulation method, the discharge characteristics under different working conditions are simulated by VSim software. It is found that with the increase of non-equilibrium degree of magnetic field, the cathode surface potential drops to the maximum position and the location of the plasma aggregation, moving from the outer surface of the cathode to the center, the intensity of the magnetic field on the cathode surface decreases When the two coils have no currents flowing, the density of the plasma is largest and the thickness of the sheath is smallest In the two coils there flow reverse 5 A currents, the non-equilibrium magnetic field reaches a maximum value and the thickness of sheath is largest, the corresponding electric field strength is weak, which is not conducive to the impact ionization, so the plasma density is smallest However, in the two coils there flow positive 5 A currents, and the non-equilibrium magnetic field is smallest, the plasma density and the sheath thickness are not only related to the non-equilibrium magnetic field, but also to the magnetic field strength. Finally, according to the results of particle simulation, the target erosion depth of the magnetron cathode is studied. Combined with the sputtering yield curve, the curve of etching depth of the cathode target surface is obtained. It is found that the erosion range of the target extends from 60 mm to 76.2 mm (target radius) before and after optimization. By adjusting the magnitudes and directions of currents in the two coils, all the target surfaces can be etched, which greatly improves the target utilization.
      通信作者: 邱清泉, qiuqingquan@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51277172)和国家自然科学基金创新研究群体科学基金(批准号:51721005)资助的课题.
      Corresponding author: Qiu Qing-Quan, qiuqingquan@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277172) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51721005).
    [1]

    Tu H L, Zhang S R, Li T F 2016 Chin. Eng. Sci. 18 90 (in Chinese) [屠海令, 张世荣, 李腾飞 2016 中国工程科学 18 90]

    [2]

    Window B, Savvides N 1986 J. Vac. Sci. Technol. A: Vac. Surf. Films 4 453

    [3]

    Savvides N, Window B 1986 J. Vac. Sci. Technol. A: Vac. Surf. Films 4 504

    [4]

    German J R 1993 IBM Tech. Discl. Bull. 36 414

    [5]

    Ido S, Nakamura K 1993 Jpn J. Appl. Phys. 32 5698

    [6]

    Bai H L, Mitani S, Wang Z J, Fujimori H, Motokawa M 2001 Thin Solid Films 389 51

    [7]

    Jiang E Y, Chen Y F, Li Z Q, Bai H L 2005 J Tianjin Univ: Nat. Sci. Eng. Ed. 38 573 (in Chinese) [姜恩永, 陈逸飞, 李志青, 白海力 2005 天津大学学报 38 573]

    [8]

    Mu Z X, Li G Q, Liu C, Jia L, Zhang C W 2003 Chin. J. Vac. Sci. Technol 23 243 (in Chinese) [牟宗信, 李国卿, 柳翠, 贾莉, 张成武 2003 真空科学与技术学报 23 243]

    [9]

    Mu Z X, Guan B Y, Li G Q, Song L F 2002 Vacuum 3 31 (in Chinese) [牟宗信, 关秉羽, 李国卿, 宋林峰 2002 真空 3 31]

    [10]

    Qiu Q Q 2012 CN102420091A (in Chinese) [邱清泉 2012 中国专利 CN102420091A]

    [11]

    Wendt A E, Lieberman M A, Meuth H 1988 J. Vac. Sci. Technol. A:Vac. Surf. Films 6 1827

    [12]

    Komath M, Rao G M, Mohan S 1999 Vacuum 52 307

    [13]

    Sun Q, Zhang Z, Lin L, Qiu Q Q, Liu D Q, Zhang G M, Dai S T 2014 IEEE Trans. Appl. Supercon. 24 1

    [14]

    Svadkovski I V, Golosov D A, Zavatskiy S M 2002 Vacuum 68 283

    [15]

    Qiu Q Q, Li Q F, Su J J, Jiao Y, Jim F 2007 Chin. J. Vac. Sci. Technol. 27 493 (in Chinese) [邱清泉, 励庆孚, 苏静静, Jiao Y, Finely Jim 2007 真空科学与技术学报 27 493]

    [16]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A: Vac. Surf. Films 5 2276

    [17]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A: Vac. Surf. Films 5 88

    [18]

    Bird G A 2003 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon Press)pp199–206

    [19]

    Kolev I, Bogaerts A, Gijbels R 2005 Phys. Rev. E 72 056402

    [20]

    Kondo S, Nanbu K 1999 J. Phys. D: Appl. Phys. 2 142

    [21]

    Kondo S, Nanbu K 2001 J. Vac. Sci. Technol. A: Vac. Surf. Films 19 838

    [22]

    Qiu Q Q, Li Q F, Su J J, Jiao Y, Jim F 2009 Nucl. Fusion Plasma Phys. 29 182 (in Chinese) [邱清泉, 励庆孚, 苏静静, Jiao Y, Finely Jim 2009 核聚变与等离子体物理 29 182]

    [23]

    Shon C H, Lee J K, Lee H J, Yang Y, Chung T H 2002 IEEE Trans. Plasma Sci. 26 1635

    [24]

    Shon C, Park J, Kang B, Lee J 1999 Jpn J. Appl. Phys. 38 4440

    [25]

    Yu H, Wang T, Wu Z M, Jiang Y D, Jiang J, Jing H J 2009 Vacuum 46 14 (in Chinese) [于贺, 王涛, 吴志明, 蒋亚东, 姜晶, 靖红军 2009 真空 46 14]

    [26]

    Qiu Q, Li Q, Su J, Jiao Y, Jim F 2008 Plasma Sci. Technol. 10 581

    [27]

    Kwon U H, Choi S H, Park Y H, Lee W J 2005 Thin Solid Films 475 17

    [28]

    Yamamura Y, Tawara H 1996 Atom Data Nucl. Data 62 149

  • [1]

    Tu H L, Zhang S R, Li T F 2016 Chin. Eng. Sci. 18 90 (in Chinese) [屠海令, 张世荣, 李腾飞 2016 中国工程科学 18 90]

    [2]

    Window B, Savvides N 1986 J. Vac. Sci. Technol. A: Vac. Surf. Films 4 453

    [3]

    Savvides N, Window B 1986 J. Vac. Sci. Technol. A: Vac. Surf. Films 4 504

    [4]

    German J R 1993 IBM Tech. Discl. Bull. 36 414

    [5]

    Ido S, Nakamura K 1993 Jpn J. Appl. Phys. 32 5698

    [6]

    Bai H L, Mitani S, Wang Z J, Fujimori H, Motokawa M 2001 Thin Solid Films 389 51

    [7]

    Jiang E Y, Chen Y F, Li Z Q, Bai H L 2005 J Tianjin Univ: Nat. Sci. Eng. Ed. 38 573 (in Chinese) [姜恩永, 陈逸飞, 李志青, 白海力 2005 天津大学学报 38 573]

    [8]

    Mu Z X, Li G Q, Liu C, Jia L, Zhang C W 2003 Chin. J. Vac. Sci. Technol 23 243 (in Chinese) [牟宗信, 李国卿, 柳翠, 贾莉, 张成武 2003 真空科学与技术学报 23 243]

    [9]

    Mu Z X, Guan B Y, Li G Q, Song L F 2002 Vacuum 3 31 (in Chinese) [牟宗信, 关秉羽, 李国卿, 宋林峰 2002 真空 3 31]

    [10]

    Qiu Q Q 2012 CN102420091A (in Chinese) [邱清泉 2012 中国专利 CN102420091A]

    [11]

    Wendt A E, Lieberman M A, Meuth H 1988 J. Vac. Sci. Technol. A:Vac. Surf. Films 6 1827

    [12]

    Komath M, Rao G M, Mohan S 1999 Vacuum 52 307

    [13]

    Sun Q, Zhang Z, Lin L, Qiu Q Q, Liu D Q, Zhang G M, Dai S T 2014 IEEE Trans. Appl. Supercon. 24 1

    [14]

    Svadkovski I V, Golosov D A, Zavatskiy S M 2002 Vacuum 68 283

    [15]

    Qiu Q Q, Li Q F, Su J J, Jiao Y, Jim F 2007 Chin. J. Vac. Sci. Technol. 27 493 (in Chinese) [邱清泉, 励庆孚, 苏静静, Jiao Y, Finely Jim 2007 真空科学与技术学报 27 493]

    [16]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A: Vac. Surf. Films 5 2276

    [17]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A: Vac. Surf. Films 5 88

    [18]

    Bird G A 2003 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon Press)pp199–206

    [19]

    Kolev I, Bogaerts A, Gijbels R 2005 Phys. Rev. E 72 056402

    [20]

    Kondo S, Nanbu K 1999 J. Phys. D: Appl. Phys. 2 142

    [21]

    Kondo S, Nanbu K 2001 J. Vac. Sci. Technol. A: Vac. Surf. Films 19 838

    [22]

    Qiu Q Q, Li Q F, Su J J, Jiao Y, Jim F 2009 Nucl. Fusion Plasma Phys. 29 182 (in Chinese) [邱清泉, 励庆孚, 苏静静, Jiao Y, Finely Jim 2009 核聚变与等离子体物理 29 182]

    [23]

    Shon C H, Lee J K, Lee H J, Yang Y, Chung T H 2002 IEEE Trans. Plasma Sci. 26 1635

    [24]

    Shon C, Park J, Kang B, Lee J 1999 Jpn J. Appl. Phys. 38 4440

    [25]

    Yu H, Wang T, Wu Z M, Jiang Y D, Jiang J, Jing H J 2009 Vacuum 46 14 (in Chinese) [于贺, 王涛, 吴志明, 蒋亚东, 姜晶, 靖红军 2009 真空 46 14]

    [26]

    Qiu Q, Li Q, Su J, Jiao Y, Jim F 2008 Plasma Sci. Technol. 10 581

    [27]

    Kwon U H, Choi S H, Park Y H, Lee W J 2005 Thin Solid Films 475 17

    [28]

    Yamamura Y, Tawara H 1996 Atom Data Nucl. Data 62 149

  • [1] 曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙. 常压下预混甲烷和空气微波等离子体放电燃烧的实验研究. 物理学报, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [2] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [3] 李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 筒形溅射阴极的磁场优化及其高功率放电特性研究. 物理学报, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [4] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [5] 崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋. 筒内高功率脉冲磁控放电的电磁控制与优化. 物理学报, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [6] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试. 物理学报, 2017, 66(24): 248401. doi: 10.7498/aps.66.248401
    [7] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [8] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析. 物理学报, 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [9] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [10] 洪庆辉, 曾以成, 李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真. 物理学报, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
    [11] 高莹莹, 何枫, 沈孟育. 非定常动态演化伴随优化设计方法. 物理学报, 2012, 61(20): 200206. doi: 10.7498/aps.61.200206
    [12] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [13] 高仁璟, 王国明, 刘书田, 唐祯安. 具有特定频段的左手材料构造与设计优化. 物理学报, 2012, 61(5): 054103. doi: 10.7498/aps.61.054103
    [14] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计. 物理学报, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [15] 牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性. 物理学报, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [16] 王栋. 滤波-荧光谱仪的优化设计. 物理学报, 2010, 59(1): 443-446. doi: 10.7498/aps.59.443
    [17] 任 驹, 郑建邦, 赵建林. 给体-受体型有机太阳电池光敏层的优化设计. 物理学报, 2007, 56(5): 2868-2872. doi: 10.7498/aps.56.2868
    [18] 杨晓苹, 翟宏琛. 双随机相位加密中相息图的优化设计. 物理学报, 2005, 54(4): 1578-1582. doi: 10.7498/aps.54.1578
    [19] 陈永洲, 陈清明, 李 军, 赖建军, 丘军林. 磁场下空心阴极氦放电过程中电子运动的计算机模拟. 物理学报, 1998, 47(10): 1665-1672. doi: 10.7498/aps.47.1665
    [20] 魏合林, 刘祖黎. 磁场对直流辉光放电阴极鞘层中电子输运过程的影响. 物理学报, 1995, 44(2): 225-232. doi: 10.7498/aps.44.225
计量
  • 文章访问数:  5642
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-01-18
  • 刊出日期:  2018-04-05

/

返回文章
返回