搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型曲面发光二极管阵列照度一致性研究

班章 梁静秋 吕金光 梁中翥 冯思悦

引用本文:
Citation:

微型曲面发光二极管阵列照度一致性研究

班章, 梁静秋, 吕金光, 梁中翥, 冯思悦

Study on uniform irradiance of micro curved-light-emitting diode array

Ban Zhang, Liang Jing-Qiu, Lü Jin-Guang, Liang Zhong-Zhu, Feng Si-Yue
PDF
导出引用
  • 为提高微型曲面发光二极管(LED)阵列在显示及照明使用方面的舒适度,针对微型曲面LED阵列照度分布的均匀性问题进行研究.采用TracePro光线追迹法分别计算了柱面显示阵列及球面照明阵列的照度分布.计算结果表明,曲面弯曲半径R和光源辐射参数m是影响柱面阵列照度分布的主要因素.通过合理排布阵列像素单元位置,可以增强器件显示均匀度,提高能量利用效率.1010柱面LED阵列最大平坦化照度均匀度为90.5%.对球面环形阵列照度分布计算结果表明,单环形LED阵列照度均匀性与像素数量无关.影响球面多环LED阵列照度分布的参数主要包括环线分布系数K、环法线与第一环阵列光源法线夹角0及各环线像素光通量之比.以双环LED阵列为模型进行计算,获得最大平坦化照度均匀度为94.8%.调整球面多环阵列位置参数可实现不同照度分布模式.实验对比了微型LED像素单元夹角分别为13,15和17时的照度分布,实验结果与理论计算较为一致.本文取得的理论与实验结果可以为微型曲面LED显示及多模式智能照明设计提供参考.
    The curved light-emitting diode (LED) array has so many advantages over conventional planar micro LED array such as wider viewing angles, and convenience in its actual applications:curved mobile phone screen, curved smart watch screen, and wide-angle communication illumination light source, etc. Irradiance uniformity is considered to be one of the momentous parameters for evaluating the degree of display or communication lighting devices. In order to improve the untilization of micro-curved LED array in display illumination, we focus on uniform irradiance of cylindrical and spherical micro-LED array by the method of ray-tracing. The calculation results show that the curved radius R and LED radiation parameter m are main factors affecting the uniform irradiance of the cylindrical array. We can improve the energy utilization efficiency by arranging the array pixel positions rationally. The simulation of 1010 cylindrical array with bending radius R=5 cm shows that the uniformity of maximum irradiance can reach 90.5% when detection distance z=300 cm and the detection area is defined as {(x, y)|-100 x 100, -100 y 100}. Furthermore, the irradiance distribution of spherical array is calculated and the results show that the irradiance uniformity of the single spherical array is unrelated to the number of pixels when it surpasses three. The main factors that affect the irradiance distribution of the multi-ring LED array are the ring distribution coefficient K, the normal angle 0, and the luminous flux ratio of each ring . Also the two-ring LED array model is calculated when the pixel number of the first ring is set to be 6 and the second ring is assumed to be 12. And the simulation results show that the maximum irradiance uniformity of the two-ring LED array can reach 94.8% in which the value of 0 is set to be 20, the ring distribution coefficient K=0.5 and the two ring pixel unit luminous flux ratio =20. Experimentally, we adopt the approach of the two micro LEDs to confirm the accuracy of the theory. And the results show that the irradiance distributions of two LEDs with the values of angle =13, 15 and 17 are consistent with the theoretical calculations. Thus, the theoretical and the experimental results in the paper can offer references for curved-LED display and multi-mode intelligent illumination.
      通信作者: 梁静秋, liangjq@ciomp.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61274122)、吉林省科技发展计划(批准号:20160204007GX,20180201024GX)、广东省科技发展计划(批准号:2016B010111003)、中国科学院创新促进会基金(批准号:2014193,2018254)和长春市科技计划资助项目(批准号:2013269)资助的课题.
      Corresponding author: Liang Jing-Qiu, liangjq@ciomp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274122), Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20160204007GX, 20180201024GX), Science and Technology Development Plan of Guangdong Province, China (Grant No. 2016B010111003), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant Nos. 2014193, 2018254), and the Changchun Science and Technology Plan, China (Grant No. 2013269).
    [1]

    Jiang H X, Lin J Y 2013 Opt. Express 21 A475

    [2]

    Bao X Z, Liang J Q, Liang Z Z, Qin Y X, L J G, Wang W B 2016 Chin. J. Lumin. 37 1399 (in Chinese) [包兴臻, 梁静秋, 梁中翥, 秦余欣, 吕金光, 王维彪 2016 发光学报 37 1399]

    [3]

    Xue B, Yang H, Yu F, Wang X T, Liu L L, Pei Y R, Lu P Z, Xie H Z, Kong Q F, Li J, Yi X Y, Wang J X, Li J M 2014 Optoelectronic Devices and Integration V (Beijing: Spie Press) p9270

    [4]

    Herrnsdorf J, McKendry J J D, Zhang S, Xie E, Ferreira R, Massoubre D, Zuhdi A M, Henderson R K, Ian U, Scott W, Kelly Anthony E, Gu E, Dawson M D 2015 IEEE Trans. Electron Dev. 62 1918

    [5]

    Ban Z, Liang Z, Liang J, Wang W, L J, Qin Y 2017 Curr. Opt. Photon. 1 143

    [6]

    Chen H W, Wen S S, Ma B X, Fu M, Xie Y 2017 Acta Opt. Sin. 37 0222001 (in Chinese) [陈浩伟, 文尚胜, 马丙戌, 符民, 谢雅 2017 光学学报 37 0222001]

    [7]

    Chai Y B 2012 M. S. Dissertation (Shanghai: Fudan University) (in Chinese) [柴颖斌 2012 硕士学位论文 (上海: 复旦大学)]

    [8]

    Mckendry J J D, Massoubre D, Zhang S, Rae B R, Green R P, Gu E, Henderson R K, Kelly A E, Dawson M D 2011 J. Lightwave Technol. 30 61

    [9]

    Tian P, Mckendry J J, Gu E, Chen Z, Sun Y, Zhang G, Dawson M D, Liu R 2016 Opt. Express 24 699

    [10]

    Day J, Li J, Lie D Y C, Bradford C, Lin J Y, Jiang H X 2011 Appl. Phys. Lett. 99 031116

    [11]

    Liu Z J, Chong W C, Wong K M, Tam K H, Lau K M 2013 IEEE Photon. Tech. L. 25 2267

    [12]

    Rajbhandari S, Chun H, Faulkner G, Cameron K, Jalajakumari A V N, Henderson R, Tsonev D, Ijaz M, Chen Z, Haas H, Xie E, McKendry J J D, Herrnsdorf J, Gu E, Dawson M D, OBrien D 2015 IEEE J. Sel. Area. Comm. 33 1750

    [13]

    O'Brien D, Haas H, Rajbhandari S, Chun H, Faulkner G, Cameron K, Jalajakumari A V N, Henderson R, Tsonev D, Ijaz M, Chen Z, Xie E, McKendry J J D, Herrnsdorf J, Gu E, Dawson M D 2015 Broadband Access Communication Technologies IX (Beijing: Spie Press) p9387

    [14]

    Gao D, Wang W, Liang Z, Liang J, Qin Y, L J 2016 J. Phys. D: Appl. Phys. 49 405108

    [15]

    Fang S W 2017 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [方士伟 2017 博士学位论文 (北京: 中国科学院大学)]

    [16]

    Liu H J, Lan T, Ni G Q 2014 Acta Phys. Sin. 63 238503 (in Chinese) [刘浩杰, 蓝天, 倪国强 2014 物理学报 63 238503]

    [17]

    Shi C Y, Wen S S, Chen Y C 2015 Chin. J. Lumin. 36 348 (in Chinese) [史晨阳, 文尚胜, 陈颖聪 2015 发光学报 36 348]

    [18]

    Moreno I, Avendao M, Tzonchev R I 2006 Appl. Opt. 45 2265

    [19]

    Zhu Z, Ma D, Hu Q, Tang Y, Liang R 2018 Opt. Express 26 A54

    [20]

    Zhao Z, Zhang H, Zheng H, Liu S 2018 Opt. Commun. 410 123

    [21]

    Tian P, Mckendry J J D, Gong Z, Guilhabert B, Watson I M, Gu Erdan, Chen Z, Zhang G, Dawson M D 2012 Appl. Phys. Lett. 101 2217

  • [1]

    Jiang H X, Lin J Y 2013 Opt. Express 21 A475

    [2]

    Bao X Z, Liang J Q, Liang Z Z, Qin Y X, L J G, Wang W B 2016 Chin. J. Lumin. 37 1399 (in Chinese) [包兴臻, 梁静秋, 梁中翥, 秦余欣, 吕金光, 王维彪 2016 发光学报 37 1399]

    [3]

    Xue B, Yang H, Yu F, Wang X T, Liu L L, Pei Y R, Lu P Z, Xie H Z, Kong Q F, Li J, Yi X Y, Wang J X, Li J M 2014 Optoelectronic Devices and Integration V (Beijing: Spie Press) p9270

    [4]

    Herrnsdorf J, McKendry J J D, Zhang S, Xie E, Ferreira R, Massoubre D, Zuhdi A M, Henderson R K, Ian U, Scott W, Kelly Anthony E, Gu E, Dawson M D 2015 IEEE Trans. Electron Dev. 62 1918

    [5]

    Ban Z, Liang Z, Liang J, Wang W, L J, Qin Y 2017 Curr. Opt. Photon. 1 143

    [6]

    Chen H W, Wen S S, Ma B X, Fu M, Xie Y 2017 Acta Opt. Sin. 37 0222001 (in Chinese) [陈浩伟, 文尚胜, 马丙戌, 符民, 谢雅 2017 光学学报 37 0222001]

    [7]

    Chai Y B 2012 M. S. Dissertation (Shanghai: Fudan University) (in Chinese) [柴颖斌 2012 硕士学位论文 (上海: 复旦大学)]

    [8]

    Mckendry J J D, Massoubre D, Zhang S, Rae B R, Green R P, Gu E, Henderson R K, Kelly A E, Dawson M D 2011 J. Lightwave Technol. 30 61

    [9]

    Tian P, Mckendry J J, Gu E, Chen Z, Sun Y, Zhang G, Dawson M D, Liu R 2016 Opt. Express 24 699

    [10]

    Day J, Li J, Lie D Y C, Bradford C, Lin J Y, Jiang H X 2011 Appl. Phys. Lett. 99 031116

    [11]

    Liu Z J, Chong W C, Wong K M, Tam K H, Lau K M 2013 IEEE Photon. Tech. L. 25 2267

    [12]

    Rajbhandari S, Chun H, Faulkner G, Cameron K, Jalajakumari A V N, Henderson R, Tsonev D, Ijaz M, Chen Z, Haas H, Xie E, McKendry J J D, Herrnsdorf J, Gu E, Dawson M D, OBrien D 2015 IEEE J. Sel. Area. Comm. 33 1750

    [13]

    O'Brien D, Haas H, Rajbhandari S, Chun H, Faulkner G, Cameron K, Jalajakumari A V N, Henderson R, Tsonev D, Ijaz M, Chen Z, Xie E, McKendry J J D, Herrnsdorf J, Gu E, Dawson M D 2015 Broadband Access Communication Technologies IX (Beijing: Spie Press) p9387

    [14]

    Gao D, Wang W, Liang Z, Liang J, Qin Y, L J 2016 J. Phys. D: Appl. Phys. 49 405108

    [15]

    Fang S W 2017 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [方士伟 2017 博士学位论文 (北京: 中国科学院大学)]

    [16]

    Liu H J, Lan T, Ni G Q 2014 Acta Phys. Sin. 63 238503 (in Chinese) [刘浩杰, 蓝天, 倪国强 2014 物理学报 63 238503]

    [17]

    Shi C Y, Wen S S, Chen Y C 2015 Chin. J. Lumin. 36 348 (in Chinese) [史晨阳, 文尚胜, 陈颖聪 2015 发光学报 36 348]

    [18]

    Moreno I, Avendao M, Tzonchev R I 2006 Appl. Opt. 45 2265

    [19]

    Zhu Z, Ma D, Hu Q, Tang Y, Liang R 2018 Opt. Express 26 A54

    [20]

    Zhao Z, Zhang H, Zheng H, Liu S 2018 Opt. Commun. 410 123

    [21]

    Tian P, Mckendry J J D, Gong Z, Guilhabert B, Watson I M, Gu Erdan, Chen Z, Zhang G, Dawson M D 2012 Appl. Phys. Lett. 101 2217

  • [1] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [2] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [3] 高承浩, 徐峰, 张丽, 赵德胜, 魏星, 车玲娟, 庄永漳, 张宝顺, 张晶. 基于离子注入隔离的微缩化发光二极管阵列性能. 物理学报, 2020, 69(2): 027802. doi: 10.7498/aps.69.20191418
    [4] 曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 闫妍. 空间调制稳态微型快拍成像测偏技术研究. 物理学报, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [5] 刘浩杰, 蓝天, 倪国强. 室内可见光通信发光二极管阵列发射性能的研究. 物理学报, 2014, 63(23): 238503. doi: 10.7498/aps.63.238503
    [6] 于万波, 赵斌. 曲面迭代混沌特性研究. 物理学报, 2014, 63(12): 120502. doi: 10.7498/aps.63.120502
    [7] 陈峻, 范广涵, 张运炎. 选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用. 物理学报, 2012, 61(8): 088502. doi: 10.7498/aps.61.088502
    [8] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [9] 陈依新, 沈光地, 韩金茹, 李建军, 郭伟玲. 不同表面结构的半导体发光二极管的效率与寿命的研究. 物理学报, 2010, 59(1): 545-549. doi: 10.7498/aps.59.545
    [10] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地. 用于POF的高性能共振腔发光二极管. 物理学报, 2009, 58(9): 6304-6307. doi: 10.7498/aps.58.6304
    [11] 李春, 彭俊彪, 曾文进. 新型TPBI/Ag阴极结构的红色有机发光二极管. 物理学报, 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [12] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [13] 黄文波, 曾文进, 王 藜, 彭俊彪. 聚合物发光二极管中的负电容效应. 物理学报, 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [14] 顾晓玲, 郭 霞, 吴 迪, 李一博, 沈光地. 表面InGaN厚度对GaN基发光二极管特性的影响. 物理学报, 2008, 57(2): 1220-1223. doi: 10.7498/aps.57.1220
    [15] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [16] 黄文波, 彭俊彪. 高分子发光二极管载流子注入过程研究. 物理学报, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [17] 张剑铭, 邹德恕, 刘思南, 徐 晨, 沈光地. 新型全方位反射铝镓铟磷薄膜发光二极管. 物理学报, 2007, 56(5): 2905-2909. doi: 10.7498/aps.56.2905
    [18] 顾晓玲, 郭 霞, 吴 迪, 徐丽华, 梁 庭, 郭 晶, 沈光地. GaN基多量子阱发光二极管的极化效应和载流子不均匀分布及其影响. 物理学报, 2007, 56(8): 4977-4982. doi: 10.7498/aps.56.4977
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
计量
  • 文章访问数:  5873
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-06
  • 修回日期:  2018-01-16
  • 刊出日期:  2018-04-05

/

返回文章
返回