搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质部分填充平行平板传输线微放电过程分析

翟永贵 王瑞 王洪广 林舒 陈坤 李永东

引用本文:
Citation:

介质部分填充平行平板传输线微放电过程分析

翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东

Multipactor in parallel-plate transmission line partially filled with dielectric material

Zhai Yong-Gui, Wang Rui, Wang Hong-Guang, Lin Shu, Chen Kun, Li Yong-Dong
PDF
导出引用
  • 本文主要研究了介质填充微波部件微放电随时间演变的过程,重点分析了介质微波部件微放电自熄灭机理.以介质部分填充平行平板传输线为研究对象,忽略空间电荷效应,采用自主研发粒子模拟软件模拟微放电过程,并将模拟结果与金属微波部件结果进行对比.结果表明,在一定功率下,金属微放电过程中电子数目呈指数形式增长,而介质微放电过程经历初始电子倍增后发生自熄灭现象,同时发现在电子数目即将下降为0时,介质表面的平均二次电子发射系数大于1或约等于1.另外,在上述模拟结果的基础上对微放电过程中介质表面积累电荷问题进一步分析,模拟结果表明,如果持续向微波部件内注入电子,介质表面的平均二次电子发射系数最终都约等于1.所得结论对研究复杂介质填充微波部件微放电的机理具有一定的理论指导价值.
    Due to the poor conductivity of the dielectrics, if an electron collides with the dielectric material, a charge will be deposited on the surface as a consequence of the secondary electron emission. Thus, the multipactor process in dielectric-loaded microwave devices differs from those in metallic devices. The objective of this paper is to study the self-extinguishing physical mechanism of the multipactor in parallel-plate transmission lines partially filled with dielectric layers by particle-in-cell simulation. The self-consistent field generated by the electrons in the simulation is assumed to be neglected, since there do not exist too many electrons in the self-extinguishing process. To illustrate the self-extinguishing phenomenon in a dielectric-loaded waveguide device, the strength of electric field in the vacuum area needs to be the same as that in a metallic device. When the input power is slightly higher than the multipactor threshold, the self-extinguishing phenomenon occurs after the initial electron multiplication while the number of electrons increases exponentially with the simulation duration in metallic device. Based on this fact, the physical mechanism of self-extinguishing phenomenon is investigated in detail. By analyzing the temporal evolution of the electrons and the average secondary electron yield (SEY), it can be concluded that the self-extinguishing phenomenon is caused by the electrostatic field generated by the charges deposited on the surface of the dielectric. Moreover, the average SEY of the dielectric tends to be one or greater than one when the number of electrons drops to nearly zero. Hence, it is necessary to further analyze the ability to continue accumulating charges on the dielectric surface when extra electrons are injected into the simulation region at the instant when the number of electrons is close to zero. For the former case, the charges deposited on the dielectric surface remain steady all along, while the charges reach to a stable state eventually as the number of injected electrons increases for the latter one. Both of them mean that the average SEY of the dielectric surface will be unity in the end. Since the electrostatic field generated by the charge deposited on the dielectric surface can reduce the risk of occurrence of multipactor, the electret material could be used in the design of the dielectric-loaded microwave devices to improve the multipactor threshold.
      通信作者: 李永东, leyond@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1537210)和中国博士后科学基金(批准号:2018M633509)资助的课题.
      Corresponding author: Li Yong-Dong, leyond@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1537210) and the China Postdoctoral Science Foundation (Grant No. 2018M633509).
    [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [3]

    Rozario N, Lenzing H 1994 IEEE Trans. MTT 42 558

    [4]

    Lu Q L, Zhou Z Y, Shi L Q, Zhao G Q 2005 Chin. Phys. 14 1465

    [5]

    Udiljak R, Anderson D, Ingvarson P, Jordan U, Jostell U, Lapierre L, Li G, Lisak M, Puech J, Sombrin J 2003 IEEE Trans. Plasma Sci. 31 396

    [6]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [7]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [8]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [9]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [10]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [11]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [12]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [13]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [14]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York: McGraw Hill Higher Education) pp1-400

    [15]

    Keneshloo R, Dadashzadeh G, Frotanpour A, Okhovvat M 2012 J.Commun. Eng. 1 18

    [16]

    Chang C, Li Y D, Verboncoeur J, Liu Y S, Liu C L 2017 Phys. Plasmas 24 040702

    [17]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [18]

    Gold S H, Jing C, Gai W, Kanareykin A 2014 IEEE International Conference on Plasma Sciences Washington, USA, May 25-29, 2014 p1

    [19]

    Torregrosa G, Coves A, Vicente C P, Prez A M, Gimeno B 2006 IEEE Trans. Electron Dev. 27 619

    [20]

    Torregrosa G, Coves A, Martinez B G, Montero I, Vicente C, Boria V E 2010 IEEE Trans. Electron Dev. 57 1160

    [21]

    Torregrosa G, Coves A, Blas A A S, Prez A M, Vicente C P, Gimeno B, Boria V E 2005 Proceesings of MULCOPIM 2005 Noordwijk, The Netherlands, September 12-15, 2005

    [22]

    Coves A, Torregrosa G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [23]

    Sounas A 2015 Ph. D. Dissertation (Lausanne: cole Polytechnique Fdrale de Lausanne)

    [24]

    Sounas A, Sorolla E, Mattes M 2014 Proceedings of MULCOPIM Valencia, Spain, September 17-19, 2014

    [25]

    Sounas A L, Sorolla E, Mattes M 2014 European Conference on Antennas and Propagation Hague, Netherlands, April 6-11, 2014 p1469

    [26]

    Sorolla E, Belhaj M, Sombrin J, Puech J 2017 Phys. Plasmas 24 103508

    [27]

    Wang H G, Zhai Y G, Li J X, Li Y, Wang R, Wang X B, Cui W Z, Li Y D 2016 Acta Phys. Sin. 65 237901 (in Chinese) [王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东 2016 物理学报 65 237901]

    [28]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [29]

    Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R, Raboso D 2006 The 27th International Power Modulator Symposium Arlington, VA, USA, May 14-18, 2006 p22

  • [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [3]

    Rozario N, Lenzing H 1994 IEEE Trans. MTT 42 558

    [4]

    Lu Q L, Zhou Z Y, Shi L Q, Zhao G Q 2005 Chin. Phys. 14 1465

    [5]

    Udiljak R, Anderson D, Ingvarson P, Jordan U, Jostell U, Lapierre L, Li G, Lisak M, Puech J, Sombrin J 2003 IEEE Trans. Plasma Sci. 31 396

    [6]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [7]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [8]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [9]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [10]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [11]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [12]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [13]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [14]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York: McGraw Hill Higher Education) pp1-400

    [15]

    Keneshloo R, Dadashzadeh G, Frotanpour A, Okhovvat M 2012 J.Commun. Eng. 1 18

    [16]

    Chang C, Li Y D, Verboncoeur J, Liu Y S, Liu C L 2017 Phys. Plasmas 24 040702

    [17]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [18]

    Gold S H, Jing C, Gai W, Kanareykin A 2014 IEEE International Conference on Plasma Sciences Washington, USA, May 25-29, 2014 p1

    [19]

    Torregrosa G, Coves A, Vicente C P, Prez A M, Gimeno B 2006 IEEE Trans. Electron Dev. 27 619

    [20]

    Torregrosa G, Coves A, Martinez B G, Montero I, Vicente C, Boria V E 2010 IEEE Trans. Electron Dev. 57 1160

    [21]

    Torregrosa G, Coves A, Blas A A S, Prez A M, Vicente C P, Gimeno B, Boria V E 2005 Proceesings of MULCOPIM 2005 Noordwijk, The Netherlands, September 12-15, 2005

    [22]

    Coves A, Torregrosa G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [23]

    Sounas A 2015 Ph. D. Dissertation (Lausanne: cole Polytechnique Fdrale de Lausanne)

    [24]

    Sounas A, Sorolla E, Mattes M 2014 Proceedings of MULCOPIM Valencia, Spain, September 17-19, 2014

    [25]

    Sounas A L, Sorolla E, Mattes M 2014 European Conference on Antennas and Propagation Hague, Netherlands, April 6-11, 2014 p1469

    [26]

    Sorolla E, Belhaj M, Sombrin J, Puech J 2017 Phys. Plasmas 24 103508

    [27]

    Wang H G, Zhai Y G, Li J X, Li Y, Wang R, Wang X B, Cui W Z, Li Y D 2016 Acta Phys. Sin. 65 237901 (in Chinese) [王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东 2016 物理学报 65 237901]

    [28]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [29]

    Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R, Raboso D 2006 The 27th International Power Modulator Symposium Arlington, VA, USA, May 14-18, 2006 p22

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用. 物理学报, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [3] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [4] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [5] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [6] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [7] 王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮. 基于临界电子密度的多载波微放电全局阈值分析. 物理学报, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [8] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [9] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制. 物理学报, 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [10] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [11] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析. 物理学报, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [12] 叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵. 基于微陷阱结构的金属二次电子发射系数抑制研究. 物理学报, 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [13] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [14] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [15] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型. 物理学报, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [16] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响. 物理学报, 2013, 62(5): 055202. doi: 10.7498/aps.62.055202
    [17] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [18] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 受激布里渊散射介质——全氟聚醚的温度特性研究. 物理学报, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [19] 唐昌建, 宫玉彬, 杨玉芷. 二维相对论运动等离子体的介电率张量. 物理学报, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [20] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
计量
  • 文章访问数:  4939
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-25
  • 修回日期:  2018-04-23
  • 刊出日期:  2018-08-05

/

返回文章
返回