搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准单色近平行光束的X射线源

王瑞荣 安红海 熊俊 谢志勇 王伟

引用本文:
Citation:

准单色近平行光束的X射线源

王瑞荣, 安红海, 熊俊, 谢志勇, 王伟

X-ray source with quasi-monochromatic parallel beam

Wang Rui-Rong, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Wang Wei
PDF
导出引用
  • 针对准单色近平行光束X射线背光成像诊断需求,提出了一种用球面弯晶进行X射线衍射选单从而获取准直光束的新方案.在神光Ⅱ装置上,设计了基于球面弯晶X射线衍射选单准直光束系统,完成了该系统的安装、调试和实验应用,获得了准单色(10-3<△λ/λ <10-2)、小发散角(< 2 mrad)和大辐照匀斑(直径φ 500 m)的X射线光源.同时基于衍射光学和球面镜成像理论,研究了不同布拉格角对球面弯晶X射线衍射光束发散角及其像散差的影响.结果表明,布拉格角会影响球面弯晶X射线衍射光束的发散角.用控制布拉格角范围的方法有望获得发散角优于1 mrad的近平行光束X射线光源.这种准单色、极小发散度和均匀角分布的X射线光源可应用于高分辨X射线成像诊断.
    In inertial confined fusion experiments, an excellent-performance and high-efficiency X-ray source plays an important role in X-ray radiography schemes. Indeed, it can be used in a variety of X-ray experimental techniques. The mono-chromaticity, flux intensity, degree of collimation (the radiation can be transported long distances without loss), and spot size of the X-ray source affect the quality of imaging. Ray-tracing simulations, which are validated by experimental results, demonstrate that high-intensity collimated X-ray beams can be produced from an isotropic X-ray source. Therefore, a method of improving the performance of an X-ray source from a laser-produced plasma is presented. A spherically bent crystal is used to collimate mono-chromatic X-rays emitted from a laser-produced plasma. Here we design a spherically bent crystal spectrometer system for collimating the laser-produced X-rays. The system performance is experimentally tested at the Shenguang Ⅱ (SGⅡ) laser facility located in Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. The beam divergence is measured by using a metal grid placed downstream from the crystal, the metal grid that possesses wires with 60 μm in diameter and 127 μm in period. An imaging plate (IP) is placed at various distances downstream from grid. The quality of the generated beam is monitored by measuring the dimensions of the grid image formed by the beam on IP. While the narrow range of wavelength is measured with a spherically bent crystal spectrometer. Experimental results show that the spherically bent crystal spectrometer system can produce quasi-monochromatic (10-3 < △ λ/λ <10-2) X-ray beams with a high degree of collimation (less than 2 mrad divergence), uniform spot size (~500 μm), and a relative tenability in the wide spectral range. The influences of various experimental parameters on the quality of beam collimation are evaluated in two ways. They can be investigated in test experiments by representing the beam divergence distribution as a function of Bragg angle. In another study of the effect of the aberrations, when the incident beam on the spherically bent crystal is not normal, the beam is less collimated in the tangential plane, and out of collimation in the sagittal plane. Following the ray-tracing method, we analyze the diffracted beam divergence produced by the astigmatic aberration. The qualitative conclusion is that the good agreement with the experimental results is obtained. By fully utilizing limited Bragg angle range, the spherically bent crystal spectrometer system can realize collimated diffracted X-ray beams with divergence of less than 1 mrad by using a laser-produced plasma X-ray source under the appropriately experimental parameters.
    • 基金项目: 国家自然科学基金(批准号:11575168)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575168).
    [1]

    Zhao Z Q, He W H, Wang J, Hao Y D, Cao L F, Gu Y Q, Zhang B H 2013 Chin. Phys. B 22 104202

    [2]

    Lang J C, Srajer G, Wang J, Lee P L 1999 Rev. Sci. Instrum. 70 4457

    [3]

    Babacar D, Vu Thien B 2012 Rev. Sci. Instrum. 83 094704

    [4]

    Li F Z, Liu Z G, Sun T X 2016 Rev. Sci. Instrum. 87 093106

    [5]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181

    [6]

    Chen J P, Wang J Y, Zou J, Lü H Y, Hu X D, Xu Y 2017 Nucl. Instrum. Meth. A 870 19

    [7]

    Wilklns S W, Stevenson A W 1988 Nucl. Instrum. Meth. A 269 321

    [8]

    Protopopov V, Shishkov V A, Kalnov V A 2000 Rev. Sci. Instrum. 71 4380

    [9]

    Wilkins S B, Spencer P D, Hatton P D, Tanner B K, Lafford T A, Spence J, Loxley N 2002 Rev. Sci. Instrum. 73 2666

    [10]

    Korotkikh E M 2006 X-Ray Spectrom. 35 116

    [11]

    Hray J, Oberta P 2008 Rev. Sci. Instrum. 79 073105

    [12]

    Nishikino M H, Sato K S, Hasegawa N, Ishino M H, Ohshima S S, Okano Y, Kawachi T Y, Numasaki H, Teshima T, Nishimura H 2010 Rev. Sci. Instrum. 81 026107

    [13]

    Sanchez del Rio M, Fraenkel M, Zigler A, Faenov A Ya, Pikuz T A 1999 Rev. Sci. Instrum. 70 1614

    [14]

    Gerritsen H C, van Brug H, Bijkerk F, van der Wiel M J 1986 J. Appl. Phys. 59 2337

  • [1]

    Zhao Z Q, He W H, Wang J, Hao Y D, Cao L F, Gu Y Q, Zhang B H 2013 Chin. Phys. B 22 104202

    [2]

    Lang J C, Srajer G, Wang J, Lee P L 1999 Rev. Sci. Instrum. 70 4457

    [3]

    Babacar D, Vu Thien B 2012 Rev. Sci. Instrum. 83 094704

    [4]

    Li F Z, Liu Z G, Sun T X 2016 Rev. Sci. Instrum. 87 093106

    [5]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181

    [6]

    Chen J P, Wang J Y, Zou J, Lü H Y, Hu X D, Xu Y 2017 Nucl. Instrum. Meth. A 870 19

    [7]

    Wilklns S W, Stevenson A W 1988 Nucl. Instrum. Meth. A 269 321

    [8]

    Protopopov V, Shishkov V A, Kalnov V A 2000 Rev. Sci. Instrum. 71 4380

    [9]

    Wilkins S B, Spencer P D, Hatton P D, Tanner B K, Lafford T A, Spence J, Loxley N 2002 Rev. Sci. Instrum. 73 2666

    [10]

    Korotkikh E M 2006 X-Ray Spectrom. 35 116

    [11]

    Hray J, Oberta P 2008 Rev. Sci. Instrum. 79 073105

    [12]

    Nishikino M H, Sato K S, Hasegawa N, Ishino M H, Ohshima S S, Okano Y, Kawachi T Y, Numasaki H, Teshima T, Nishimura H 2010 Rev. Sci. Instrum. 81 026107

    [13]

    Sanchez del Rio M, Fraenkel M, Zigler A, Faenov A Ya, Pikuz T A 1999 Rev. Sci. Instrum. 70 1614

    [14]

    Gerritsen H C, van Brug H, Bijkerk F, van der Wiel M J 1986 J. Appl. Phys. 59 2337

  • [1] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像. 物理学报, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [3] 王研, 刘鑫, 黄万霞, 易明皓, 郭金川, 朱佩平. 更正:线焦斑X射线源成像[物理学报2016,65,219501]. 物理学报, 2017, 66(8): 089901. doi: 10.7498/aps.66.089901
    [4] 牟欢, 李保权, 曹阳. 基于空间应用的透射式微型微束调制X射线源. 物理学报, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [5] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [6] 陈晓虎, 王晓方, 张巍巍, 汪文慧. 相位型波带板应用于大尺度X射线源成像的分析与模拟. 物理学报, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [7] 黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰. kHz激光与固体靶相互作用产生的X射线源. 物理学报, 2013, 62(20): 205204. doi: 10.7498/aps.62.205204
    [8] 韩奎, 王娟娟, 周菲, 沈晓鹏, 沈义峰, 吴玉喜, 唐刚. 基于光子晶体的Kretschmann结构中自准直光束的Goos-Hänchen位移研究. 物理学报, 2013, 62(4): 044221. doi: 10.7498/aps.62.044221
    [9] 邓宁勤, 赵宝升, 盛立志, 鄢秋荣, 杨颢, 刘舵. 基于X射线的空间语音通信系统. 物理学报, 2013, 62(6): 060705. doi: 10.7498/aps.62.060705
    [10] 王剑, 赵宗清, 蔡达锋, 黄文忠, 何颖玲, 谷渝秋. Kα射线源半影成像研究. 物理学报, 2009, 58(10): 7074-7078. doi: 10.7498/aps.58.7074
    [11] 李洪涛, 罗 毅, 席光义, 汪 莱, 江 洋, 赵 维, 韩彦军, 郝智彪, 孙长征. 基于X射线衍射的GaN薄膜厚度的精确测量. 物理学报, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [12] 沈晓鹏, 韩 奎, 李海鹏, 沈义峰, 王子煜. 光子晶体自准直光束偏振分束器. 物理学报, 2008, 57(3): 1737-1741. doi: 10.7498/aps.57.1737
    [13] 李超荣, 吴立军, 陈万春. 高分辨X射线衍射研究杂质对晶体结构完整性的影响. 物理学报, 2001, 50(11): 2185-2191. doi: 10.7498/aps.50.2185
    [14] 崔明启, 缪建伟, 王俊, 崔聪悟, 黎刚, 朱佩平. 软X射线多层膜单色器能量分辨研究. 物理学报, 1997, 46(5): 1015-1021. doi: 10.7498/aps.46.1015
    [15] 孙可煦, 易荣清, 杨家敏, 王红斌, 马洪良, 陈正林, 黄天暄, 崔延莉, 郑志坚, 唐道源, 丁永坤, 温树槐, 江文勉, 赵永宽, 崔明启, 黎刚, 崔聪悟, 唐鄂生. 同步辐射软X射线源用于软X射线探测元件定标. 物理学报, 1997, 46(4): 650-655. doi: 10.7498/aps.46.650
    [16] 张建中, 曹嬿妮. 发散X射线晶体衍射模拟研究. 物理学报, 1990, 39(1): 124-128. doi: 10.7498/aps.39.124
    [17] 姜晓明, 蒋最敏, 刘文汉, 吴自勤. 退火对W/C周期性多层膜X射线衍射性能的影响. 物理学报, 1988, 37(11): 1893-1899. doi: 10.7498/aps.37.1893
    [18] 郭常霖. X射线单色四重聚焦照相机单色器的衍射几何. 物理学报, 1980, 29(9): 1217-1221. doi: 10.7498/aps.29.1217
    [19] 徐济安, 胡静竹. 高压下X射线衍射技术. 物理学报, 1977, 26(6): 521-525. doi: 10.7498/aps.26.521
    [20] 吴德昌, 王仁卉. 锌的X射线热漫散衍射及弹性系数. 物理学报, 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
计量
  • 文章访问数:  5886
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-01
  • 修回日期:  2018-11-18
  • 刊出日期:  2019-12-20

/

返回文章
返回