搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于元胞传输模型的楼梯区域行人运动

金辉 郭仁拥

引用本文:
Citation:

基于元胞传输模型的楼梯区域行人运动

金辉, 郭仁拥

Study of pedestrian flow on stairs with a cellular transmission model

Jin Hui, Guo Ren-Yong
PDF
HTML
导出引用
  • 针对楼梯区域行人运动进行观测实验, 获得行人上下楼过程中的运动数据, 通过对数据进行整理与分析, 绘制不同过程中流量-密度变化关系图. 通过对流密关系图进行定量分析, 掌握楼梯区域行人运动特征, 并改进原有元胞传输模型, 提出楼梯行人运动模型, 仿真模拟行人运动过程. 模型中, 引入势能修正系数, 利用异向行人对元胞势能的影响来改变行人的路径选择; 引入流量修正系数, 描述不同的物理参数对元胞边界最大流量的影响; 引入偏移系数, 修正移动规则, 增强优先方向对行人路径选择行为的影响. 然后, 通过比较仿真结果与实验数据, 对模型及引入参数进行验证和校准. 最后, 利用校正模型, 模拟研究楼梯区域对向行人运动过程, 并对势能修正参数进行了灵敏度分析, 进一步研究模型参数对行人运动的影响. 研究表明, 该模型可以模拟刻画楼梯区域行人运动过程, 同时验证了楼梯区域行人集散效率跟行人到达率与行人路径选择有关.
    The aim of this study is to address the following issues: 1) revealing the typical behaviors and properties of pedestrian movement when going upstairs and downstairs; 2) constructing a pedestrian evacuation model to formulate the walking process of pedestrians in stair area; 3) verifying that the cell transmission model widely used in the two-dimensional walking space can also be applied to the three-dimensional staircase area. Firstly, an observation experiment is carried out to gain the pedestrian movement data in the process of going upstairs and downstairs. By collating the data, the relation between density and flow in the unidirectional process of going upstairs or going downstairs, and in the bi-directional process of going upstairs and downstairs, are drawn respectively. Then, by analyzing the fundamental diagrams, several characteristics of pedestrian movement in stair area are revealed. Based on these characteristics, an extended cell transmission model is proposed. In this model, a potential correction coefficient is introduced to change the route choice of pedestrians by using the influence of different directional pedestrians on the potential; a flow modification coefficient is introduced to describe the effect of physical parameters on the maximum flow at the boundary between two neighboring cells; and an offset coefficient is introduced to correct movement rules and strengthen the influence of preferential direction on pedestrian route choice. Further, simulations relied on the proposed model are conducted. By comparing the simulation results with the experimental data, the model is calibrated. Then the calibrated model is employed to formulate the pedestrian movement in stair area, and the sensitivity of the potential correction parameter is also discussed. The simulation results indicate that the proposed model can successfully reproduce the movement of pedestrians on stair. Moreover, the route-choice behaviors of pedestrians can be directed by varying the values of the potential correction coefficient, which can present important information about optimizing the evacuation process of pedestrians on stair, thereby reducing the risk of an accident, such as congesting and treading.
      通信作者: 郭仁拥, buaa_guorenyong@126.com
    • 基金项目: 国家自然科学基金(批准号: 71622005)资助的课题.
      Corresponding author: Guo Ren-Yong, buaa_guorenyong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 71622005).
    [1]

    Galea E R, Sharp G, Lawrence P J 2008 J. Fire Prot. Eng. 18 291Google Scholar

    [2]

    Yeo S K, He Y P 2009 Fire Saf. J. 44 183Google Scholar

    [3]

    Yang L Z, Rao P, Zhu K J, Liu S B, Zhan X 2012 Saf. Sci. 50 1173Google Scholar

    [4]

    Hoskins B L, Milke J A 2012 Fire Saf. J. 48 49Google Scholar

    [5]

    岳昊, 张旭, 陈刚, 邵春福 2012 物理学报 61 130509Google Scholar

    Yue H, Zhang X, Chen G, Shao C F 2012 Acta Phys. Sin. 61 130509Google Scholar

    [6]

    Shields T J, Boyce K E 2009 Fire Saf. J. 44 881Google Scholar

    [7]

    岳昊, 邵春福, 关宏志, 段龙梅 2010 物理学报 59 4499Google Scholar

    Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499Google Scholar

    [8]

    陈亮, 郭仁拥, 塔娜 2013 物理学报 62 050506

    Chen L, Guo R Y, Ta N 2013 Acta Phys. Sin. 62 050506

    [9]

    永贵, 黄海军, 许岩 2013 物理学报 62 010506

    Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506 (in Chinese)

    [10]

    Sano T, Ronchi E, Minegishi Y, Nilsson D 2017 Fire Saf. J. 89 77Google Scholar

    [11]

    任刚, 陆丽丽, 王炜 2012 物理学报 61 144501Google Scholar

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501Google Scholar

    [12]

    Hughes R L 2002 Trans. Res. B 32 507

    [13]

    董立耘, 陈立, 段晓茵 2015 物理学报 64 220505Google Scholar

    Dong L Y, Chen L, Duan X Y 2015 Acta Phys. Sin. 64 220505Google Scholar

    [14]

    Huang H J, Guo R Y 2008 Phys. Rev. E 78 021131Google Scholar

    [15]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar

    [16]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487Google Scholar

    [17]

    杨凌霄, 赵小梅, 高自友, 郑建风 2011 物理学报 60 100501Google Scholar

    Yang L X, Zhao X M, Gao Z Y, Zheng J F 2011 Acta Phys. Sin. 60 100501Google Scholar

    [18]

    Qu Y C, Gao Z Y, Xiao Y, Li X G 2014 Saf. Sci. 70 189Google Scholar

    [19]

    Burstedde C, Klauck K, Schadschneider A, Zittart J 2001 Physica A 295 507Google Scholar

    [20]

    Guo R Y, Guo X 2012 Chin. Phys. B 21 018901Google Scholar

    [21]

    Guo R Y, Huang H J, Wong S C 2011 Trans. Res. B 45 490Google Scholar

    [22]

    霍非舟 2015 博士学位论文 (合肥:中国科学技术大学)

    Huo F Z 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [23]

    Fujiyama T, Tyler N 2010 Transport. Plan. Techn. 33 177202Google Scholar

    [24]

    Xu X, Song W G 2009 Build. Environ. 44 1039Google Scholar

    [25]

    Ma J, Song W G, Tian W, Lo S M, Liao G X 2012 Saf. Sci. 50 1665Google Scholar

    [26]

    张培红, 鲁韬, 陈宝智, 卢兆明 2005 人类工效学 11 8Google Scholar

    Zhang P H, Lu T, Chen B Z, Lu Z M 2005 Chin. J. Ergon. 11 8Google Scholar

    [27]

    Kretz T, Grunebohm A, Kessel A, Klupfel H, Meyer Konig H, Schreckenberg M 2008 Saf. Sci. 46 72Google Scholar

    [28]

    Peacock R D, Hoskins B L, Kuligowski E D 2012 Saf. Sci. 50 1655Google Scholar

  • 图 1  实验楼梯区域

    Fig. 1.  The experimental staircase area.

    图 2  单层楼梯三视图

    Fig. 2.  Single-story staircase three views.

    图 3  (a) 上楼过程中楼梯区域平均流量-密度散点图及关系曲线; (b) 下楼过程中楼梯区域平均流量-密度散点图及关系曲线; (c) 上下楼过程中楼梯区域平均流量-密度散点图及关系曲线

    Fig. 3.  (a) The relation of the density against the average flow when going upstairs; (b) the relation of the density against the average flow when going downstairs; (c) the relation of the density against the average flow when going upstairs and downstairs.

    图 4  二维斜坡平面行走空间

    Fig. 4.  Walking space on the two-dimensional slope section.

    图 5  空间划分: 正六边形元胞

    Fig. 5.  Discretization of space: a regular hexagonal cell.

    图 6  上楼过程第10, 30, 60, 90及110时间步模拟结果伪彩图 (颜色深浅表示每个元胞内行人数量与元胞容量之比)

    Fig. 6.  Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to the capacity of the cell at time steps 10, 30, 60, 90 and 110 in the process of going upstairs.

    图 7  下楼过程第10, 30, 60, 90及110时间步模拟结果伪彩图 (颜色深浅表示每个元胞内行人数量与元胞容量之比)

    Fig. 7.  Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to the capacity of the cell at time steps 10, 30, 60, 90 and 110 in the process of going downstairs.

    图 8  观测 (方形)与实验(圆形)流量-密度关系对比图 (a) 上楼过程, (b) 下楼过程

    Fig. 8.  Comparison of the fundamental density-flow diagram from the observation data (square marks) and the experiment (circle marks) (a) in the process of going upstairs, and (b) in the process of going downstairs.

    图 9  双向运动过程的流量-密度关系对比图

    Fig. 9.  Comparison of the fundamental density-flow diagram from the observation (square marks) and the experiment (circle marks) in the process of bi-directional movment .

    图 10  (a) 稳定状态之前楼梯区域双向运动的流量-密度关系图; (b) 稳定状态之后楼梯区域双向运动的流量-密度关系图

    Fig. 10.  (a) Fundamental density-flow diagram of the bi-directional pedestrian flow on the stairs before the stabilization process; (b) fundamental density-flow diagram of the bi-directional pedestrian flow on the stairs after the stabilization process.

    图 11  楼梯区域双向运动的流量-密度关系散点图 (a) δ = 1.0, θ = 0.8; (b) δ = 0.6, θ = 0.8; (c) δ = 0.3, θ = 0.8; (d) δ = 1.4, θ = 0.8

    Fig. 11.  Fundamental density-flow diagram of the bi-directional pedestrian flow on the stairs when (a) δ = 1.0 and θ = 0.8; (b) δ = 0.6 and θ = 0.8; (c) δ = 0.3 and θ = 0.8; (d) δ = 1.4 and θ = 0.8.

    图 12  楼梯区域双向运动中上行行人(左)、下行行人(中)及双向行人(右)模拟结果伪彩图(颜色深浅表示每个元胞内行人数量与元胞容量之比) (a) δ = 1.0, θ = 0.8; (b) δ = 0.6, θ = 0.8; (c) δ = 0.3, θ = 0.8; (d) δ = 1.4, θ = 0.8

    Fig. 12.  Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to the capacity of the cell during the walking process of bi-directional pedestrian flows on the stairs (upward flow in the left, downward flow in the middle, and bi-directional flows in the right) when δ = 1.0 and θ = 0.8 in (a), δ = 0.6 and θ = 0.8 in (b), δ = 0.3 and θ = 0.8 in (c), δ = 1.4 and θ = 0.8 in (d).

    表 1  实验楼梯的基本参数

    Table 1.  The basic parameters of the staircases.

    有效宽度/m有效长度/m台阶数/级台阶高度/m台阶宽度/m楼梯坡度 tanθ有效面积/m2
    3.168.95380.150.370.4028.28
    下载: 导出CSV

    表 2  楼梯区域上的部分观测数据

    Table 2.  Some observation data on staircase area.

    数据
    编号
    行人数量
    N/人
    流入量
    IF/人·$\Delta t$−1
    流出量
    OF/人·$\Delta t$−1
    TT+10 sUDUD
    111130806
    22526012011
    32924012017
    43231021022
    53328019014
    61820120100
    73936140170
    82933210170
    95454120120
    10141280100
    1118193323
    1226286958
    1350469131016
    14484488812
    1538358111012
     注: U, 上行; D, 下行.
    下载: 导出CSV

    表 3  稳定过程中的部分流量数据

    Table 3.  Some flow data in the stabilization process.

    时间步606162636465666768
    上楼流量/人·s−16.06.06.06.06.06.06.06.06.0
    下楼流量/人·s−16.06.06.06.06.06.06.06.06.0
    时间步808182838485868788
    上楼流量/人·s−16.06.06.06.06.06.06.06.06.0
    下楼流量/人·s−16.06.06.06.06.06.06.06.06.0
    下载: 导出CSV

    表 4  稳定过程结束后的部分流量数据

    Table 4.  Some flow data after the stabilization process.

    时间步106107108109110111112113114
    上楼流量/人·s−16.05.95.75.24.63.93.12.41.8
    下楼流量/人·s−15.95.54.73.72.71.81.10.70.4
    下载: 导出CSV

    表 5  稳定过程结束后的部分行人数据

    Table 5.  Some pedestrian data after the stabilization process.

    时间步106107108109110111112113114
    上楼人数/人96.690.684.678.672.666.660.654.648.6
    下楼人数/人76.770.164.858.852.846.840.834.929.0
    下载: 导出CSV
  • [1]

    Galea E R, Sharp G, Lawrence P J 2008 J. Fire Prot. Eng. 18 291Google Scholar

    [2]

    Yeo S K, He Y P 2009 Fire Saf. J. 44 183Google Scholar

    [3]

    Yang L Z, Rao P, Zhu K J, Liu S B, Zhan X 2012 Saf. Sci. 50 1173Google Scholar

    [4]

    Hoskins B L, Milke J A 2012 Fire Saf. J. 48 49Google Scholar

    [5]

    岳昊, 张旭, 陈刚, 邵春福 2012 物理学报 61 130509Google Scholar

    Yue H, Zhang X, Chen G, Shao C F 2012 Acta Phys. Sin. 61 130509Google Scholar

    [6]

    Shields T J, Boyce K E 2009 Fire Saf. J. 44 881Google Scholar

    [7]

    岳昊, 邵春福, 关宏志, 段龙梅 2010 物理学报 59 4499Google Scholar

    Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499Google Scholar

    [8]

    陈亮, 郭仁拥, 塔娜 2013 物理学报 62 050506

    Chen L, Guo R Y, Ta N 2013 Acta Phys. Sin. 62 050506

    [9]

    永贵, 黄海军, 许岩 2013 物理学报 62 010506

    Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506 (in Chinese)

    [10]

    Sano T, Ronchi E, Minegishi Y, Nilsson D 2017 Fire Saf. J. 89 77Google Scholar

    [11]

    任刚, 陆丽丽, 王炜 2012 物理学报 61 144501Google Scholar

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501Google Scholar

    [12]

    Hughes R L 2002 Trans. Res. B 32 507

    [13]

    董立耘, 陈立, 段晓茵 2015 物理学报 64 220505Google Scholar

    Dong L Y, Chen L, Duan X Y 2015 Acta Phys. Sin. 64 220505Google Scholar

    [14]

    Huang H J, Guo R Y 2008 Phys. Rev. E 78 021131Google Scholar

    [15]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar

    [16]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487Google Scholar

    [17]

    杨凌霄, 赵小梅, 高自友, 郑建风 2011 物理学报 60 100501Google Scholar

    Yang L X, Zhao X M, Gao Z Y, Zheng J F 2011 Acta Phys. Sin. 60 100501Google Scholar

    [18]

    Qu Y C, Gao Z Y, Xiao Y, Li X G 2014 Saf. Sci. 70 189Google Scholar

    [19]

    Burstedde C, Klauck K, Schadschneider A, Zittart J 2001 Physica A 295 507Google Scholar

    [20]

    Guo R Y, Guo X 2012 Chin. Phys. B 21 018901Google Scholar

    [21]

    Guo R Y, Huang H J, Wong S C 2011 Trans. Res. B 45 490Google Scholar

    [22]

    霍非舟 2015 博士学位论文 (合肥:中国科学技术大学)

    Huo F Z 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [23]

    Fujiyama T, Tyler N 2010 Transport. Plan. Techn. 33 177202Google Scholar

    [24]

    Xu X, Song W G 2009 Build. Environ. 44 1039Google Scholar

    [25]

    Ma J, Song W G, Tian W, Lo S M, Liao G X 2012 Saf. Sci. 50 1665Google Scholar

    [26]

    张培红, 鲁韬, 陈宝智, 卢兆明 2005 人类工效学 11 8Google Scholar

    Zhang P H, Lu T, Chen B Z, Lu Z M 2005 Chin. J. Ergon. 11 8Google Scholar

    [27]

    Kretz T, Grunebohm A, Kessel A, Klupfel H, Meyer Konig H, Schreckenberg M 2008 Saf. Sci. 46 72Google Scholar

    [28]

    Peacock R D, Hoskins B L, Kuligowski E D 2012 Saf. Sci. 50 1655Google Scholar

  • [1] 李明华, 袁振洲, 许琰, 田钧方. 基于改进格子气模型的对向行人流分层现象的随机性研究. 物理学报, 2015, 64(1): 018903. doi: 10.7498/aps.64.018903
    [2] 胡俊, 游磊. 三维空间行人疏散的元胞自动机模型. 物理学报, 2014, 63(8): 080507. doi: 10.7498/aps.63.080507
    [3] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [4] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [5] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型. 物理学报, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [6] 王锐, 王玉山. Delta-P1近似漫反射光学模型的二阶参量灵敏度. 物理学报, 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [7] 陈然, 李翔, 董力耘. 地铁站内交织行人流的简化模型和数值模拟. 物理学报, 2012, 61(14): 144502. doi: 10.7498/aps.61.144502
    [8] 任刚, 陆丽丽, 王炜. 基于元胞自动机和复杂网络理论的双向行人流建模. 物理学报, 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [9] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [10] 杨凌霄, 赵小梅, 高自友, 郑建风. 考虑交通出行惯例的双向行人流模型研究. 物理学报, 2011, 60(10): 100501. doi: 10.7498/aps.60.100501
    [11] 胡晓琴, 谢国锋. 遗传算法优化BaTiO3壳模型势参数. 物理学报, 2011, 60(1): 013401. doi: 10.7498/aps.60.013401
    [12] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [13] 肖松青, 谢国锋. 钙钛矿铁电体原子势参数的灵敏度分析及优化. 物理学报, 2010, 59(7): 4808-4811. doi: 10.7498/aps.59.4808
    [14] 梅超群, 黄海军, 唐铁桥. 城市快速路系统的元胞自动机模型与分析. 物理学报, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [15] 周金旺, 陈秀丽, 孔令江, 刘慕仁, 谭惠丽, 周建槐. 一种改进的多速双向行人流元胞自动机模型. 物理学报, 2009, 58(4): 2281-2285. doi: 10.7498/aps.58.2281
    [16] 章法强, 杨建伦, 李正宏, 钟耀华, 叶 凡, 秦 义, 陈法新, 应纯同, 刘广均. 高灵敏度的快中子照相系统. 物理学报, 2007, 56(1): 583-588. doi: 10.7498/aps.56.583
    [17] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
    [18] 尚华艳, 黄海军, 高自友. 基于元胞传输模型的可变信息标志选址问题研究. 物理学报, 2007, 56(8): 4342-4347. doi: 10.7498/aps.56.4342
    [19] 吕晓阳, 孔令江, 刘慕仁. 一维元胞自动机随机交通流模型的宏观方程分析. 物理学报, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [20] 潘少华. 关于腔内光谱机理和灵敏度的分析. 物理学报, 1981, 30(9): 1270-1274. doi: 10.7498/aps.30.1270
计量
  • 文章访问数:  7387
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 修回日期:  2018-11-14
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回