搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反馈型TM01主模同轴虚阴极振荡器

张运俭 丁恩燕

引用本文:
Citation:

反馈型TM01主模同轴虚阴极振荡器

张运俭, 丁恩燕

TM01 dominant mode coaxial virtual cathode oscillator with feedback construction

Zhang Yun-Jian, Ding En-Yan
PDF
HTML
导出引用
  • 作为一种空间电荷高功率微波器件, 同轴虚阴极振荡器微波输出模式一般为TM01与TE11模式的混合模式. 本文通过数值模拟及实验分析, 对同轴虚阴极振荡器进行了结构调整, 提出了一种同轴反馈式虚阴极振荡器. 通过对阳极网的结构设计, 器件内阳极网的反馈结构改变了阳极网内虚阴极反射电子束的分布, 实现了同轴虚阴极振荡器以TM01模式为主要模式输出的高功率微波. 同轴虚阴极振荡器在工作电压400 kV下微波输出850 MW, 微波脉宽半高宽约30 ns, 频率为4.1 GHz.
    Virtual cathode oscillator, as a kind of space-charge high-power microwave source, has an output microwave mode that is generally an admixture of TM01 mode and TE11 mode. The analysis of the resonator in the anode mesh shows that when the transmission of the anode mesh is high, it is easy to produce strong reflected electron beam, forming a conical quasi-resonator structure, thus enhances the output of TE11 mode. When the transmission of the anode mesh is low, the beam intensity of the reflected electron beam can be weakened due to the absorption of the metal mesh, and the TE11 mode can be suppressed, so the output mode is mainly TM01 mode. In this paper, a feedback coaxial virtual cathode oscillator is investigated with the use of numerical simulation and experimental data analysis. The feedback coaxial virtual cathode oscillator is formed by closing the end of the anode mesh through a metal plate and changing the path of the reflected electron beam from the metal mesh to the gap between cathode and anode. The particle in cell method is used in the numerical simulation of the virtual cathode oscillator, and the impedance of the 400 kV diode is about 13 Ω under a voltage of 400 kV. After the optimal design by numerical simulation, the average output microwave power from the virtual cathode oscillator is 1.5 GW, and the frequency of the microwave is about 4.2 GHz, which is basically consistent with the theoretical calculation results. In this new kind of virtual cathode oscillator, the distribution of reflected electrons is modified by the feedback sheet on the anode mesh, the output high power microwave pattern is demonstrated to be dominated by TM01 mode. The microwave power obtained in the experiment is measured by the array antenna power density integration method. For axisymmetric mode, a receiving antenna array is formed by placing multiple receiving antennas on one side of the axis of the antenna pattern. The power densities of different angles on the horizontal circumference with the phase center of the transmitting antenna are measured, the average power density of two adjacent points is multiplied by the area of the spherical belt between these two points, and then the resulting power is added by the power between the adjacent two points, thereby obtaining the total radiation power. With this method, the microwave power is 850 MW with frequency 4.1 GHz and pulse width 30 ns under slaving voltage 400 kV.
      通信作者: 张运俭, zhang_yunjian@sina.com
    • 基金项目: 国防基础科学研究计划(批准号: JCKY2016212B034)资助的课题.
      Corresponding author: Zhang Yun-Jian, zhang_yunjian@sina.com
    • Funds: Project supporetd by the National Defense Basic Scientific Research Program of China (Grant No. JCKY2016212B034).
    [1]

    Benford J, Swgle J 1992 High Power Microwaves (New York: Artech House Inc.) pp1–3

    [2]

    Jiang W H, Woolverton K, Dickens J 1999 IEEE Trans. Plasma Sci. 27 1538Google Scholar

    [3]

    Chen X P, Dickens J, Choi E H 2003 Proc of the 2003 IEEE Inter Pulse Power Conf Dallas, TX, USA, June 15–18, 2003 p1165

    [4]

    罗雄, 廖成, 孟凡宝 2006 物理学报 55 5774Google Scholar

    Luo X, Liao C, Meng F B 2006 Acta Phys. Sin. 55 5774Google Scholar

    [5]

    Evgney G, Pavel M 2015 IEEE Trans. Plasma Sci. 43 1014Google Scholar

    [6]

    Yang Z F, Liu G Z, Shao H, Sun J, Zhang Y C, Ye H, Yang M 2013 IEEE Trans. Plasma Sci. 41 3604Google Scholar

    [7]

    Fan Y W, Li Z Q, Sh T, Liu J 2014 Chin. Phys. B 23 075208Google Scholar

    [8]

    Champeaux S, Gouard P, Cousin R, Larour J 2016 IEEE Trans. Plasma Sci. 44 31Google Scholar

    [9]

    Kitsanov S A, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D 2002 IEEE Trans. Plasma Sci. 30 274Google Scholar

    [10]

    Song K B, Lim J E, Seo Y, Choi E H 2009 IEEE Trans. Plasma Sci. 37 304Google Scholar

    [11]

    Jiang W H, Magne K 2001 Phys. Plasmas 8 3781Google Scholar

    [12]

    Jennie A, Mats J, Denny A 2013 IEEE Trans. Plasma Sci. 41 2758Google Scholar

    [13]

    叶卫民, 李传胪 1998 强激光与粒子束 10 268

    Ye W M, Li C L 1998 High Power Laser and Particle Beams 10 268

    [14]

    Shao H, Liu G Z, Yang Z F 2005 J. Plasma Phys. 71 563Google Scholar

    [15]

    劭浩, 刘国治, 杨占峰 2006 强激光与粒子束 18 230

    Shao H, Liu G Z, Yang Z F 2006 High Power Laser and Particle Beams 18 230

    [16]

    邵浩, 刘国治 2001 物理学报 50 2387Google Scholar

    Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387Google Scholar

    [17]

    刘静, 舒挺, 李志强 2011 物理学报 60 105202Google Scholar

    Liu J, Shu T, Li Z Q 2011 Acta Phys. Sin. 60 105202Google Scholar

    [18]

    张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏, 林郁正 2009 物理学报 58 6973Google Scholar

    Zhang Y P, Liu G Z, Shao H, Yang Z F, Song Z M, Lin Y Z 2009 Acta Phys. Sin. 58 6973Google Scholar

    [19]

    张运俭, 孟凡宝, 范植开 2007 强激光与粒子束 19 682

    Zhang Y J, Meng F B, Fan Z K 2007 High Power Laser and Particle Beams 19 682

    [20]

    Woo W 1987 Phys. Fluids 30 239Google Scholar

    [21]

    Xing Q Z, Wang D, Huang F, Deng J K 2006 IEEE Trans. Plasma Sci. 34 584Google Scholar

  • 图 1  同轴虚阴极结构示意图

    Fig. 1.  Schematic diagram of coaxial virtual cathode.

    图 2  实验所获得的两种典型方向图(Ⅰ, Ⅱ)及TM01模式和TE11模式模比分别为3∶2和1∶2的方向图

    Fig. 2.  Two typical patterns obtained by experiments (I, II) and TM01 and TE11 patterns with modulus ratios of 3∶2 and 1∶2

    图 3  同轴虚阴极内阳极网结构示意图

    Fig. 3.  Structure diagram of anode mesh in coaxial virtual cathode.

    图 4  反馈型同轴虚阴极数值计算结构

    Fig. 4.  The numerical calculation structure of feedback coaxial virtual cathode.

    图 5  电子束pr-r空间动量分布

    Fig. 5.  pr-r spatial momentum distribution of electron beam.

    图 6  电子束pz-z空间动量分布

    Fig. 6.  pz-z spatial momentum distribution of electron beam.

    图 7  反馈型同轴虚阴极振荡器输出微波平均功率

    Fig. 7.  Average power of feedback coaxial virtual cathode oscillator.

    图 8  反馈型同轴虚阴极振荡器输出微波频率

    Fig. 8.  Microwave frequency of feedback coaxial virtual cathode oscillator.

    图 9  反馈型同轴虚阴极振荡器实验结构

    Fig. 9.  Experimental structure of feedback coaxial virtual cathode oscillator.

    图 10  反馈型同轴虚阴极振荡器实验波形

    Fig. 10.  Experimental waveform of feedback coaxial virtual cathode oscillator.

    图 11  高功率微波辐射总功率测量原理图

    Fig. 11.  Measurement principle of high power microwave total power.

    图 12  功率密度积分法测量辐射总功率示意图

    Fig. 12.  Diagram of total power measured by power density integral method.

    图 13  天线辐射方向图理论值与实测值比较

    Fig. 13.  Comparison of theoretical and measured radiation patterns

  • [1]

    Benford J, Swgle J 1992 High Power Microwaves (New York: Artech House Inc.) pp1–3

    [2]

    Jiang W H, Woolverton K, Dickens J 1999 IEEE Trans. Plasma Sci. 27 1538Google Scholar

    [3]

    Chen X P, Dickens J, Choi E H 2003 Proc of the 2003 IEEE Inter Pulse Power Conf Dallas, TX, USA, June 15–18, 2003 p1165

    [4]

    罗雄, 廖成, 孟凡宝 2006 物理学报 55 5774Google Scholar

    Luo X, Liao C, Meng F B 2006 Acta Phys. Sin. 55 5774Google Scholar

    [5]

    Evgney G, Pavel M 2015 IEEE Trans. Plasma Sci. 43 1014Google Scholar

    [6]

    Yang Z F, Liu G Z, Shao H, Sun J, Zhang Y C, Ye H, Yang M 2013 IEEE Trans. Plasma Sci. 41 3604Google Scholar

    [7]

    Fan Y W, Li Z Q, Sh T, Liu J 2014 Chin. Phys. B 23 075208Google Scholar

    [8]

    Champeaux S, Gouard P, Cousin R, Larour J 2016 IEEE Trans. Plasma Sci. 44 31Google Scholar

    [9]

    Kitsanov S A, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D 2002 IEEE Trans. Plasma Sci. 30 274Google Scholar

    [10]

    Song K B, Lim J E, Seo Y, Choi E H 2009 IEEE Trans. Plasma Sci. 37 304Google Scholar

    [11]

    Jiang W H, Magne K 2001 Phys. Plasmas 8 3781Google Scholar

    [12]

    Jennie A, Mats J, Denny A 2013 IEEE Trans. Plasma Sci. 41 2758Google Scholar

    [13]

    叶卫民, 李传胪 1998 强激光与粒子束 10 268

    Ye W M, Li C L 1998 High Power Laser and Particle Beams 10 268

    [14]

    Shao H, Liu G Z, Yang Z F 2005 J. Plasma Phys. 71 563Google Scholar

    [15]

    劭浩, 刘国治, 杨占峰 2006 强激光与粒子束 18 230

    Shao H, Liu G Z, Yang Z F 2006 High Power Laser and Particle Beams 18 230

    [16]

    邵浩, 刘国治 2001 物理学报 50 2387Google Scholar

    Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387Google Scholar

    [17]

    刘静, 舒挺, 李志强 2011 物理学报 60 105202Google Scholar

    Liu J, Shu T, Li Z Q 2011 Acta Phys. Sin. 60 105202Google Scholar

    [18]

    张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏, 林郁正 2009 物理学报 58 6973Google Scholar

    Zhang Y P, Liu G Z, Shao H, Yang Z F, Song Z M, Lin Y Z 2009 Acta Phys. Sin. 58 6973Google Scholar

    [19]

    张运俭, 孟凡宝, 范植开 2007 强激光与粒子束 19 682

    Zhang Y J, Meng F B, Fan Z K 2007 High Power Laser and Particle Beams 19 682

    [20]

    Woo W 1987 Phys. Fluids 30 239Google Scholar

    [21]

    Xing Q Z, Wang D, Huang F, Deng J K 2006 IEEE Trans. Plasma Sci. 34 584Google Scholar

  • [1] 舒盼盼, 赵朋程. 高功率微波介质窗气体侧击穿特性的粒子-蒙特卡罗碰撞模拟. 物理学报, 2024, 73(23): 235101. doi: 10.7498/aps.73.20241177
    [2] 王学友, 王宇飞, 郑婉华. Parity-time对称性对电注入半导体激光器的模式控制. 物理学报, 2020, 69(2): 024202. doi: 10.7498/aps.69.20191351
    [3] 李正红, 谢鸿全. 过模返波管的正反馈机制. 物理学报, 2019, 68(5): 054103. doi: 10.7498/aps.68.20181897
    [4] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究. 物理学报, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [5] 唐涛. 高功率微波土壤击穿的数值验证研究. 物理学报, 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [6] 苏东, 邓立科, 王斌. 离子通道中的虚阴极辐射. 物理学报, 2014, 63(23): 235204. doi: 10.7498/aps.63.235204
    [7] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计. 物理学报, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [8] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究. 物理学报, 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [9] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [10] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [11] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究. 物理学报, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [12] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究. 物理学报, 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [13] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究. 物理学报, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [14] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [15] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究. 物理学报, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [17] 张运俭, 孟凡宝, 范植开, 罗 雄. 高效强流径向分离腔振荡器研究. 物理学报, 2008, 57(2): 975-979. doi: 10.7498/aps.57.975
    [18] 罗 雄, 廖 成, 孟凡宝, 张运俭. 同轴虚阴极谐振效应研究. 物理学报, 2006, 55(11): 5774-5778. doi: 10.7498/aps.55.5774
    [19] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究. 物理学报, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [20] 邵浩, 刘国治. 向外发射同轴型虚阴极振荡器研究. 物理学报, 2001, 50(12): 2387-2392. doi: 10.7498/aps.50.2387
计量
  • 文章访问数:  8406
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-08
  • 修回日期:  2019-06-15
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回