搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中颗粒孔洞流的最大休止倾角和流量公式

谢文韬 李若如 彭政 蒋亦民

引用本文:
Citation:

水中颗粒孔洞流的最大休止倾角和流量公式

谢文韬, 李若如, 彭政, 蒋亦民

Maximum ceasing angle of inclination andflux formula for granular orifice flow in water

Xie Wen-Tao, Li Ruo-Ru, Peng Zheng, Jiang Yi-Min
PDF
HTML
导出引用
  • 实验测量了完全浸泡在水中的玻璃珠颗粒样品在重力驱动下通过不同倾角和孔径的圆形孔洞的流量. 发现与空气中的情形类似, 不同孔径时的流量均与倾角余弦呈良好的线性关系; 线性外推得到的零流量角, 即流量休止临界角, 随颗粒粒径与孔洞直径之比d/D的减小而线性增加; 在无穷大孔径极限下, 此临界角在实验误差范围内与样品的休止角一致. 此外,所有测量都可用Beverloo公式$Q = {C_0}\rho {g^{1/2}}{(D - kd)^{5/2}}$很好地拟合;其中参数${C_0}$k仅与倾角余弦有关, 分别呈线性和平方反比关系. 与文献报道的空气孔洞流测量结果对比, 发现差别主要来自浮力和流体拖曳力对参数C0的影响. 这些结果表明用倾斜孔洞流测量颗粒材料休止角的方法和Beverloo公式具有一定的普适性. 无论颗粒间隙中填充的是水还是空气, 孔洞流的行为在定性上是一样的.
    In previous work [Acta Phys. Sin. 60 054501 (2011)], we found that for inclined Granular Orifice Flow (GOF) in air, regardless of the orifice size, the flow rate Q had a good linear relationship with the cosine of the inclination $\cos \theta $, i.e. $\dfrac{Q}{{{Q_0}}} = 1 - \dfrac{{\cos \theta - 1}}{{\cos {\theta _{\rm c}} - 1}}$, where Q0 is flow rate at $\theta ={0^ \circ }$, and ${\theta _{\rm c}}$ is the critical angle of flow ceasing obtained by linear extrapolation. Moreover, ${\theta _{\rm c}}$ increased linearly with ratio between grain and orifice diameter d/D, and at the limit of d/D going to zero (that is, D going to infinity), the angle of repose of the sample ${\theta _{\rm r}}~( = 180^ \circ - \theta _{\rm c\infty})$ was obtained. Since the flow of GOF is very stable, we believe that the linear extrapolation of the above-mentioned inclined GOF provides a novel method for accurately measuring the angle of repose of granular materials. This method has been proved to be effective in a wider orifice size range by another work [Acta Phys. Sin. 65 084502 (2016)]; and three angles, namely the repose angle measured by GOF, the free accumulation angle of a sandpile and the internal friction angle of the granular material measured by Coulomb yielding, are confirmed to be consistent. In this work, we extend this method to underwater, measuring the mass flow rate of a granular sample (glass beads) which completely immersed in water and driven by gravity, discharged from an inclined orifice for various inclination angles and orifice diameters. It is found that similar to the case in air, regardless of the orifice size, the flow rate increase linearly with the cosine of the inclination; the critical angle of flow ceasing increases linearly with ratio between grain and orifice diameter; at the limit of infinite orifice, this critical angle is consistent with the repose angle of the underwater sample within the experimental error range. In addition, all measurements can be well fitted by using the Beverloo formula $Q = {C_0}\rho {g^{1/2}}{(D - kd)^{5/2}}$, where the parameters C0 and k are only related to the cosine of the inclination, and are linear and inversely squared, respectively. Compared with the results of GOF in air reported by previous work, it is found that the difference mainly comes from the influence of buoyancy and fluid drag forces on the parameter C0. These results show that both the method of measuring angle of repose with the inclined GOF and the Beverloo formula have certain universality. The behavior of GOF is qualitatively the same whether the interstitial fluid is water or air.
      通信作者: 彭政, zpeng@csu.edu.cn
    • 基金项目: 国家级-基于人工表面等离激元的功能集成型辐射器研究(11274390)
      Corresponding author: Peng Zheng, zpeng@csu.edu.cn
    [1]

    Nedderman R M1992 Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press) pp292–294

    [2]

    陆坤权, 刘寄星 2004 物理 33 713Google Scholar

    Lu K Q, Liu J X 2004 Physics 33 713Google Scholar

    [3]

    Beverloo W A, Lenginer H A, van de Velde J 1961 Chem. Eng. Sci. 15 260Google Scholar

    [4]

    Tian Y, Lin P, Zhang S, Wang C L, Wan J F, Yang L 2015 Adv. Powder Technol. 26 1191Google Scholar

    [5]

    Lin P, Zhang S, Qi J, Xing Y M, Yang L 2015 PhysicaA 417 29Google Scholar

    [6]

    Zhang S, Lin P, Yang G, Wan J F, Tian Y, Yang L 2019 Chin. Phys. B 28 018101Google Scholar

    [7]

    Rubio-Largo S M, Janda A, Maza D, Zuriguel I, Hidalgo R C 2015 Phys. Rev. Lett. 114 238002Google Scholar

    [8]

    Janda A, Zuriguel I, Maza D 2012 Phys. Rev. Lett. 108 248001Google Scholar

    [9]

    van Zuilichem D J, van Egmond N D, DeSwart J G 1974 Powder Technol. 10 161Google Scholar

    [10]

    Peng Z, Zheng H P, Jiang Y M 2009 arXiv: 0908.0258 v3 [cond-mat.soft]

    [11]

    Madrid M A, Darias J R, Pugnaloni L A 2018 EPL 123 14004Google Scholar

    [12]

    Ji S Y, Wang S Q, Peng Z 2019 Powder Technol. 356 702Google Scholar

    [13]

    Sheldon H G, Durian D J 2010 Granul. Matter 12 579Google Scholar

    [14]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001

    [15]

    Thomas C C, Durian D J 2013 Phys. Rev. E 87 052201Google Scholar

    [16]

    彭政, 蒋亦民 2011 物理学报 60 054501Google Scholar

    Peng Z, Jiang Y M 2011 Acta Phys. Sin. 60 054501Google Scholar

    [17]

    张昱, 韦艳芳, 彭政, 蒋亦民, 段文山, 厚美瑛 2016 物理学报 65 084502Google Scholar

    Zhang Y, Wei YF, Peng Z, Jiang YM, Duan WS, Hou MY 2016 Acta Phys. Sin. 65 084502Google Scholar

    [18]

    Wilson T J, Pfeifer C R, Mesyngier N, Durian D J 2014 Pap. Phys. 6 060009

    [19]

    Koivisto J, Durian D J 2017 Nature Comm. 8 15551Google Scholar

    [20]

    Hu W R, Zhao J F, Long M, Zhang X W, Liu Q S, Hou M Y, Kang Q, Wang Y R, Xu S H, Kong W J, Zhang H, Wang S F, Sun Y Q, Hang H Y, Huang Y P, Cai W M, Zhao Y, Dai J W, Zheng H Q, Duan E K, Wang J F 2014 Microgravity Sci. Technol. 26 159Google Scholar

    [21]

    Cheng X H, Xiao S Z, Cao A S, Hou M Y 2019 Granul. Matter 21 104Google Scholar

    [22]

    Kobayashi T, Ochiai H, Suyama Y, Aoki S, Yasufuku N, Omine K 2009 Soils Found. 49 115Google Scholar

  • 图 1  (a)实验装置示意图; (b)料仓透水侧壁照片; (c)倾角小于45度时采用的实验装置; (d)倾角大于45度时采用的实验装置; (e)楔形孔洞示意图

    Fig. 1.  (a) Schematic of the setup; (b) photograph of the permeable side wall of the silo; (c) the experimental devices used when the inclination is less than 45 degrees; (d) the experimental devices used when the inclination is greater than 45 degrees; (e) schematic of the wedge-shaped orifice D.

    图 2  $D = 14$ mm, $\theta = 90^\circ $ 时典型的$M(t)$数据; 左下和右上插图分别为从主图中摘出的40−80 s及80−120 s的$M(t)$数据, 均呈良好的线性关系. 由这两段数据计算得到的流量$Q$没有差别, 均为6.53 g/s, 表明流量非常稳定

    Fig. 2.  Typical data of M(t) at D = 14 mm, $\theta = 90^\circ $;the lower left and upper right insets are the data of 40−80 s and 80−120 s extracted from the main graph, both of which show good linearity. Both flow rates$Q$ calculated from these two insets are 6.53 g/s, indicating that the flow is very stable.

    图 3  (a)不同孔径D下流量Q随倾角余弦$\cos \theta $ 的变化, 实线为直线拟合; (b)用水平($\theta = {0^\circ }$)流量${Q_0}$ 归一化的流量$Q/{Q_0}$ 随倾角余弦$\cos \theta $ 的变化关系, 实线为公式(3)的拟合结果; (c)临界流量休止角${\theta _{\rm{c}}}$随粒径-孔径比d/D的变化关系, 实线和${\theta _0}$为直线拟合结果

    Fig. 3.  (a) The variation of flow rateQ with the inclination cosine $\cos \theta $ at different orifices D, where the solid line is a linear fit; (b) variation of the normalized flow rate $Q/{Q_0}$ with $\cos \theta $, where ${Q_0}$ is the rate at $\theta = {0^ \circ }$, and the solid line is the fitted result of equation (3); (c) the relationship between the critical angle of flow ceasing ${\theta _{\rm{c}}}$ and the ratio d/D, where the solid line and ${\theta _0}$ are results of linear fitting.

    图 4  (a)用Beverloo公式(1)和(2)拟合图3数据的结果, 插图为不同倾角时${Q^{2/5}}$D的变化关系, 实线为线性拟合; (b), (c)Beverloo参数${C_0}$$k$$\cos \theta $ 的变化关系, 及其用公式(2)的拟合情况. 图(c)中的插图是${k^{ - 2}}$$\cos \theta $的变化关系

    Fig. 4.  (a) Results of fitting the data in Figure 3 using the Beverloo formula (1) and (2), the inset is the change of ${Q^{2/5}}$ with D at different inclination, and the solid line is a linear fit; (b) and (c) variations of the parameters ${C_0}$ and $k$ with $\cos \theta $, and solid lines are results of fits by using equation (2). The inset in (c) is the change of ${k^{ - 2}}$ with $\cos \theta $.

    图 5  (a)和(b)是水中(实心方点)和空气中(空心圆点)GOF的Beverloo参数${C_0}$k$\cos \theta $的变化; (c)−(f)分别为$\theta = {0^ \circ }, {60^ \circ }, {90^ \circ }, {120^ \circ }$时, 水中和空气中GOF流量QD的变化, 插图是$Q/{C_0}$D的变化. 空气中的实验数据来自文献[16]

    Fig. 5.  (a) and (b): Beverloo parameters ${C_0}$ and $k$ of GOF in water (solid squares) and in air (hollow circles) as a function of $\cos \theta $; (c)−(f): the changes of GOF flow rate Q with D in water and in air when $\theta = {0^ \circ }, {60^ \circ }, {90^ \circ }, {120^ \circ }$, respectively, and the inset is the change of $Q/{C_0}$ with D. The experimental data in air comes from ref. [16].

    图 6  水和文献[16]空气的(a) Beverloo系数${C_0}$和(b) GOF流量$Q$的比值

    Fig. 6.  Ratio of (a) Beverloo coefficient ${C_0}$ and (b) GOF flow rate Q in water and in air (from Ref. [16])

  • [1]

    Nedderman R M1992 Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press) pp292–294

    [2]

    陆坤权, 刘寄星 2004 物理 33 713Google Scholar

    Lu K Q, Liu J X 2004 Physics 33 713Google Scholar

    [3]

    Beverloo W A, Lenginer H A, van de Velde J 1961 Chem. Eng. Sci. 15 260Google Scholar

    [4]

    Tian Y, Lin P, Zhang S, Wang C L, Wan J F, Yang L 2015 Adv. Powder Technol. 26 1191Google Scholar

    [5]

    Lin P, Zhang S, Qi J, Xing Y M, Yang L 2015 PhysicaA 417 29Google Scholar

    [6]

    Zhang S, Lin P, Yang G, Wan J F, Tian Y, Yang L 2019 Chin. Phys. B 28 018101Google Scholar

    [7]

    Rubio-Largo S M, Janda A, Maza D, Zuriguel I, Hidalgo R C 2015 Phys. Rev. Lett. 114 238002Google Scholar

    [8]

    Janda A, Zuriguel I, Maza D 2012 Phys. Rev. Lett. 108 248001Google Scholar

    [9]

    van Zuilichem D J, van Egmond N D, DeSwart J G 1974 Powder Technol. 10 161Google Scholar

    [10]

    Peng Z, Zheng H P, Jiang Y M 2009 arXiv: 0908.0258 v3 [cond-mat.soft]

    [11]

    Madrid M A, Darias J R, Pugnaloni L A 2018 EPL 123 14004Google Scholar

    [12]

    Ji S Y, Wang S Q, Peng Z 2019 Powder Technol. 356 702Google Scholar

    [13]

    Sheldon H G, Durian D J 2010 Granul. Matter 12 579Google Scholar

    [14]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001

    [15]

    Thomas C C, Durian D J 2013 Phys. Rev. E 87 052201Google Scholar

    [16]

    彭政, 蒋亦民 2011 物理学报 60 054501Google Scholar

    Peng Z, Jiang Y M 2011 Acta Phys. Sin. 60 054501Google Scholar

    [17]

    张昱, 韦艳芳, 彭政, 蒋亦民, 段文山, 厚美瑛 2016 物理学报 65 084502Google Scholar

    Zhang Y, Wei YF, Peng Z, Jiang YM, Duan WS, Hou MY 2016 Acta Phys. Sin. 65 084502Google Scholar

    [18]

    Wilson T J, Pfeifer C R, Mesyngier N, Durian D J 2014 Pap. Phys. 6 060009

    [19]

    Koivisto J, Durian D J 2017 Nature Comm. 8 15551Google Scholar

    [20]

    Hu W R, Zhao J F, Long M, Zhang X W, Liu Q S, Hou M Y, Kang Q, Wang Y R, Xu S H, Kong W J, Zhang H, Wang S F, Sun Y Q, Hang H Y, Huang Y P, Cai W M, Zhao Y, Dai J W, Zheng H Q, Duan E K, Wang J F 2014 Microgravity Sci. Technol. 26 159Google Scholar

    [21]

    Cheng X H, Xiao S Z, Cao A S, Hou M Y 2019 Granul. Matter 21 104Google Scholar

    [22]

    Kobayashi T, Ochiai H, Suyama Y, Aoki S, Yasufuku N, Omine K 2009 Soils Found. 49 115Google Scholar

  • [1] 程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld. 颗粒物质内自旋小球运动行为的数值模拟研究. 物理学报, 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [2] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [3] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [4] 张昱, 韦艳芳, 彭政, 蒋亦民, 段文山, 厚美瑛. 倾斜沙漏流与颗粒休止角研究. 物理学报, 2016, 65(8): 084502. doi: 10.7498/aps.65.084502
    [5] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [6] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [7] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [8] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [9] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [10] 彭政, 蒋亦民. 颗粒孔洞流的最大休止倾角和流量公式. 物理学报, 2011, 60(5): 054501. doi: 10.7498/aps.60.054501
    [11] 黄德财, 胡凤兰, 邓开明, 吴海平. 开口角度对二维颗粒流稀疏流-密集流转变的影响. 物理学报, 2010, 59(11): 8249-8254. doi: 10.7498/aps.59.8249
    [12] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [13] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [14] 鲍德松, 雷哲敏, 胡国琦, 张训生, 唐孝威. 瓶颈开口角对二维颗粒流的影响. 物理学报, 2007, 56(10): 5922-5925. doi: 10.7498/aps.56.5922
    [15] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [16] 钟 杰, 彭 政, 吴耀宇, 史庆藩, 陆坤权, 厚美瑛. 二维颗粒流从稀疏态到密集态的临界转变. 物理学报, 2006, 55(12): 6691-6696. doi: 10.7498/aps.55.6691
    [17] 鲍德松, 周 英, 张训生, 唐孝威. 通道宽度对二维粗糙边界斜面颗粒流的影响. 物理学报, 2005, 54(2): 798-801. doi: 10.7498/aps.54.798
    [18] 周 英, 鲍德松, 张训生, 雷哲民, 胡国琦, 唐孝威. 边界条件对二维斜面颗粒流颗粒分布的影响. 物理学报, 2004, 53(10): 3389-3393. doi: 10.7498/aps.53.3389
    [19] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
    [20] 徐光磊, 胡国琦, 张训生, 鲍德松, 陈 唯, 厚美瑛, 陆坤权. 通道宽度和初始流量对颗粒稀疏流-密集流转变临界开口的影响. 物理学报, 2003, 52(4): 875-878. doi: 10.7498/aps.52.875
计量
  • 文章访问数:  8202
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-13
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-05-20

/

返回文章
返回