搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柿单宁特征功能基团与金属离子作用的计算分析

刘智高 陈涛 胡朝浩 王殿辉 王仲民 李桂银

引用本文:
Citation:

柿单宁特征功能基团与金属离子作用的计算分析

刘智高, 陈涛, 胡朝浩, 王殿辉, 王仲民, 李桂银

Calculation and analysis of interaction between characteristic functional group of persimmon tannin and metal ions

Liu Zhi-Gao, Chen Tao, Hu Chao-Hao, Wang Dian-Hui, Wang Zhong-Min, Li Gui-Yin
PDF
HTML
导出引用
  • 柿单宁具有优良的吸附重金属离子的效能, 表没食子儿茶素没食子酸酯(EGCG)是柿单宁发挥其活性作用的关键结构单体. 为分析柿单宁与金属离子相互作用的本质, 本文利用密度泛函理论(density functional thoery, DFT)的B3LYP方法, 从EGCG-金属复合物的构型、Mayer键级、自然布居分析、结合能、以及弱相互作用方面, 计算分析了EGCG与金属离子(Ag+, Hg2+, Cu2+, Fe2+, In3+, Al3+, Au3+)的相互作用关系. 研究结果表明, EGCG-Fe2+复合物主要以螯合键的形式吸附在一起; 而EGCG主要是通过静电吸引作用吸附Ag+和Hg2+离子; In3+, Al3+和Au3+离子与EGCG形成了独特的“腔状结构”金属复合物; Cu2+离子与EGCG的复合则同时存在着螯合作用、静电吸引作用和芳环堆积作用. 结合能计算显示, 金属离子所带电荷量越多, 越容易进行电荷转移, EGCG对其的静电吸引作用就越强. 这些计算分析可为探究柿单宁吸附金属离子的机理提供帮助.
    Persimmon tannin has excellent adsorption efficiency of heavy metal ions, and epigallocatechin gallate (EGCG) is the key structural monomer of persimmon tannin to play its active role. In order to analyze the nature of the interaction between persimmon tannin and metal ions, in this paper the density functional theory (DFT) is used to calculate and analyze the interactions between EGCG and metal ions (Ag+, Hg2+, Cu2+, Fe2+, In3+, Al3+, Au3+), from the respects of EGCG-metal complex configuration, Mayer bond order, natural population analysis, binding energy, and weak interaction. In this paper, the B3LYP combined with DFT-D3 dispersion correction method is mainly used. For metal atoms, the Lanl2dz basis set is adopted. For H, C and O atoms, the 6-311G (d, p) basis set is adopted for optimizing the structure, and the more accurate 6-311+G (d, p) basis set is selected for calculating the single point energy. At the same time, the study adds the SMD solvation model with water as the solvent. All calculations are done by using the Gaussian 09 package. The method of reduced density gradient function is used to study the weak interactions between EGCG and metal ions. The results of research show that EGCG-Fe2+ complex is adsorbed mainly by chelating bond. However, the EGCG adsorbs mainly Ag+, Hg2+ ions through electrostatic attraction. The configurations of the complexes show that In3+, Al3+ and Au3+ ions with EGCG form unique “luminal structure” metal complexes, so there is not only electrostatic attraction, but also aromatic ring stacking between these three metal ions and D ring 4"O, 5"O. The calculated Mayer bond order indicates that the bond order of the composite bond is formed by Fe2+ ion and the EGCG is the largest in the seven metal complexes, and the bond order is formed by In3+ ion, and EGCG is smallest. The compound of Cu2+ ion and EGCG have chelation, electrostatic attraction and aromatic ring stacking. By observing the binding energy, it can be found that the more charges the metal ions have, the easier the charge transfer will be and the stronger the electrostatic attraction of EGCG may be. These results will provide enlightenment for further studying the mechanism of persimmon tannin's adsorption of metal ions.
      通信作者: 王仲民, zmwang@guet.edu.cn ; 李桂银, liguiyin01@guet.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51961010)和广西重点研发项目(批准号: 桂科2018AB38016, 桂科AB18281013, 桂科AB16380278)资助的课题
      Corresponding author: Wang Zhong-Min, zmwang@guet.edu.cn ; Li Gui-Yin, liguiyin01@guet.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51961010) and the Guangxi Key Research and Development Program, China (Grant Nos. Guike2018AB38016, GuikeAB18281013, GuikeAB16380278)
    [1]

    Matheus J R V, Andrade C J D, Miyahira R F, Fai A E C 2020 Food Rev. Int.Google Scholar

    [2]

    Elhabiri M, Carrer C, Marmolle F, Traboulsi H 2007 Inorg. Chim. Acta 360 353Google Scholar

    [3]

    Chen Y M, Wang M K, Huang P M 2006 J. Agric. Food Chem. 54 212Google Scholar

    [4]

    Li X J, Wang Z M, Liang H J, Ning J L, Li G Y, Zhou Z D 2017 Environ. Technol. 40 112Google Scholar

    [5]

    Wang Z M, Gao M M, Li X J, Ning J L, Zhou Z D, Li G Y 2020 Mater. Sci. Eng., C 108 110196Google Scholar

    [6]

    Nakajima A, Sakaguchi T 1993 J. Chem. Technol. Biotechnol. 57 321Google Scholar

    [7]

    Gurung M, Adhikari B B, Kawakita H, Ohto K, Inoue K, Alam S 2012 Ind. Eng. Chem. Res. 51 11901Google Scholar

    [8]

    Zhou Z D, Liu F L, Huang Y, Wang Z M, Li G Y 2015 Int. J. Biol. Macromol. 77 336Google Scholar

    [9]

    Gurung M, Adhikari B B, Morisada S, Kawakita H, Ohto K, Inoue K, Alam S 2013 Bioresource Technol. 129 108Google Scholar

    [10]

    Yi Q, Fan R, Xie F, Zhang Q, Luo Z 2016 J. Taiwan Inst. Chem. Eng. 61 299Google Scholar

    [11]

    Li C M, Leverence R, Trombley J D, Xu S, Yang J, Tian Y, Reed J D 2010 J. Agric. Food Chem. 58 9033Google Scholar

    [12]

    江腾, 马万福, 谢楠, 周平 2011 物理化学学报 27 2291Google Scholar

    Jiang T, Ma W F, Xie N, Zhou P 2011 Acta Phys-Chim. Sin. 27 2291Google Scholar

    [13]

    王晓巍, 蒋刚, 杜际广 2011 物理化学学报 27 309Google Scholar

    Wang X W, Jiang G, Du J G 2011 Acta Phys.-Chim. Sin. 27 309Google Scholar

    [14]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [15]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [16]

    Malgorzata B, Pawel P, Giovanni S, Julien B, Vincenzo B 2010 J. Chem. Theory Comput. 6 2115Google Scholar

    [17]

    Jonathon W, Matthew G, Jeffrey B N, Martin H 2015 J. Chem. Theory Comput. 11 1481Google Scholar

    [18]

    Becke A D 1988 Phys. Rev. A 38 3098Google Scholar

    [19]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [20]

    Bougherara H, Kadri R, Kadri M, Yekhlef M, Boumaza A 2021 J. Mol. Struct. 1223 128855Google Scholar

    [21]

    Viji A, Revathi B, Balachandran V, Babiyana S, Narayana B, Salian V V 2020 Chem.l Data Collections 30 100585Google Scholar

    [22]

    Goerigk L, Grimme S 2011 Phys. Chem. Chem. Phys. 13 6670Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 (Rev. A.02). (Gaussian: Inc., Wallingford CT)

    [24]

    Johnson E R, Kernan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J, Yang W T 2010 J. Am. Chem. Soc. 132 6498Google Scholar

    [25]

    施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林 2021 物理学报 70 053102Google Scholar

    Shi B, Yuan L, Tang T Y, Lu L M, Zhao X H, W X N, Tang Y L 2021 Acta Phys. Sin. 70 053102Google Scholar

    [26]

    Navarro R E, Santacruz H, Inoue M 2005 J. Inorg. Biochem. 99 584Google Scholar

    [27]

    Inoue M B, Inoue M, Fernando Q, Valcic S, Timmermann B N 2002 J. Inorg. Biochem. 88 7Google Scholar

    [28]

    Esparza I, Salinas I, Santamaria C, Garcia-Mina J M, Fernandez J M 2005 Anal. Chim. Acta 543 267Google Scholar

    [29]

    Lu T, Chen F W 2013 J. Phys. Chem. A. 117 3100Google Scholar

    [30]

    卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar

    Lu T, Chen F W 2012 Acta Phys.-Chim. Sin. 28 1Google Scholar

    [31]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [32]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics. 14 33Google Scholar

  • 图 1  柿单宁末端结构四种单体结构示意图 (a) 表儿茶素; (b) 表没食子儿茶素; (c) 表儿茶素没食子酸酯; (d) 表没食子儿茶素没食子酸酯

    Fig. 1.  Structures of four monomers in the terminal structure of persimmon tannin: (a) EC; (b) EGC; (c) ECG; (d) EGCG.

    图 2  (a) EGCG结构图; (b) EGCG-金属复合物结构模型图

    Fig. 2.  (a) Structure of EGCG; (b) structure model diagram of EGCG-metal complex.

    图 3  EGCG-金属复合物的几何构型图 (a) EGCG-Ag+; (b) EGCG-Hg2+; (c) EGCG-Cu2+; (d) EGCG-Fe2+; (e) EGCG-In3+; (f) EGCG-Al3+; (g) EGCG-Au3+

    Fig. 3.  Geometric diagrams of EGCG-metal complexes: (a) EGCG-Ag+; (b) EGCG-Hg2+; (c) EGCG-Cu2+; (d) EGCG-Fe2+; (e) EGCG-In3+; (f) EGCG-Al3+; (g) EGCG-Au3+.

    图 4  EGCG-金属复合物的结合能

    Fig. 4.  Binding energies of EGCG-metal complexes.

    图 5  EGCG-金属复合物的RDG函数等值面图 (a) EGCG-Ag+; (b) EGCG-Hg2+; (c) EGCG-Cu2+; (d) EGCG-Fe2+; (e) EGCG-In3+; (f) EGCG-Al3+; (g) EGCG-Au3+

    Fig. 5.  RDG function isosurface diagrams of EGCG-metal complexes: (a) EGCG-Ag+; (b) EGCG-Hg2+; (c) EGCG-Cu2+; (d) EGCG-Fe2+; (e) EGCG-In3+; (f) EGCG-Al3+; (g) EGCG-Au3+.

    表 1  EGCG-金属复合物的复合键键长

    Table 1.  Composite bond lengths of the EGCG-metal complexes.

    EGCG-金属复合物复合键键长/Å
    ECGC-Ag+4"O—Ag2.363
    5"O—Ag2.302
    EGCG-Hg2+4"O—Hg2.366
    5"O—Hg2.333
    EGCG-Cu2+4"O—Cu1.941
    5"O—Cu1.916
    EGCG-Fe2+4"O—Fe1.926
    5"O—Fe1.893
    EGCG-In3+4"O—In2.929
    5"O—In2.683
    EGCG-Al3+4"O—Al2.418
    5"O—Al2.008
    EGCG-Au3+4"O—Au2.979
    5"O—Au2.194
    下载: 导出CSV

    表 2  EGCG-金属复合物中复合键的Mayer键级

    Table 2.  The Mayer bond orders of composite bond in the EGCG-metal complexes.

    EGCG-金属复合物复合键Mayer键级
    ECGC-Ag+4"O—Ag0.3462
    5"O—Ag0.4304
    EGCG-Hg2+4"O—Hg0.3870
    5"O—Hg0.4697
    EGCG-Cu2+4"O—Cu0.5089
    5"O—Cu0.5458
    EGCG-Fe2+4"O—Fe0.5940
    5"O—Fe0.7480
    EGCG-In3+4"O—In0.0742
    5"O—In0.1183
    EGCG-Al3+4"O—Al0.1635
    5"O—Al0.3022
    EGCG-Au3+4"O—Au0.1058
    5"O—Au0.4331
    下载: 导出CSV

    表 3  EGCG-金属复合物中复合原子的自然布居分析

    Table 3.  Natural population analysis of composite atoms in the EGCG-metal complexes.

    EGCG-金属复合物复合原子自然电荷分布
    ECGC-Ag+Ag0.7803
    4"O–0.8837
    5"O–0.9144
    EGCG-Hg2+Hg1.7086
    4"O–0.8860
    5"O–0.9045
    EGCG-Cu2+Cu1.4836
    4"O–0.8479
    5"O–0.8421
    EGCG-Fe2+Fe1.4342
    4"O–0.8121
    5"O–0.8417
    EGCG-In3+In1.0761
    4"O–0.5587
    5"O–0.6041
    EGCG-Al3+Al0.8686
    4"O–0.5978
    5"O–0.7942
    EGCG-Au3+Au0.8679
    4"O–0.5229
    5"O–0.6244
    下载: 导出CSV
  • [1]

    Matheus J R V, Andrade C J D, Miyahira R F, Fai A E C 2020 Food Rev. Int.Google Scholar

    [2]

    Elhabiri M, Carrer C, Marmolle F, Traboulsi H 2007 Inorg. Chim. Acta 360 353Google Scholar

    [3]

    Chen Y M, Wang M K, Huang P M 2006 J. Agric. Food Chem. 54 212Google Scholar

    [4]

    Li X J, Wang Z M, Liang H J, Ning J L, Li G Y, Zhou Z D 2017 Environ. Technol. 40 112Google Scholar

    [5]

    Wang Z M, Gao M M, Li X J, Ning J L, Zhou Z D, Li G Y 2020 Mater. Sci. Eng., C 108 110196Google Scholar

    [6]

    Nakajima A, Sakaguchi T 1993 J. Chem. Technol. Biotechnol. 57 321Google Scholar

    [7]

    Gurung M, Adhikari B B, Kawakita H, Ohto K, Inoue K, Alam S 2012 Ind. Eng. Chem. Res. 51 11901Google Scholar

    [8]

    Zhou Z D, Liu F L, Huang Y, Wang Z M, Li G Y 2015 Int. J. Biol. Macromol. 77 336Google Scholar

    [9]

    Gurung M, Adhikari B B, Morisada S, Kawakita H, Ohto K, Inoue K, Alam S 2013 Bioresource Technol. 129 108Google Scholar

    [10]

    Yi Q, Fan R, Xie F, Zhang Q, Luo Z 2016 J. Taiwan Inst. Chem. Eng. 61 299Google Scholar

    [11]

    Li C M, Leverence R, Trombley J D, Xu S, Yang J, Tian Y, Reed J D 2010 J. Agric. Food Chem. 58 9033Google Scholar

    [12]

    江腾, 马万福, 谢楠, 周平 2011 物理化学学报 27 2291Google Scholar

    Jiang T, Ma W F, Xie N, Zhou P 2011 Acta Phys-Chim. Sin. 27 2291Google Scholar

    [13]

    王晓巍, 蒋刚, 杜际广 2011 物理化学学报 27 309Google Scholar

    Wang X W, Jiang G, Du J G 2011 Acta Phys.-Chim. Sin. 27 309Google Scholar

    [14]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [15]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [16]

    Malgorzata B, Pawel P, Giovanni S, Julien B, Vincenzo B 2010 J. Chem. Theory Comput. 6 2115Google Scholar

    [17]

    Jonathon W, Matthew G, Jeffrey B N, Martin H 2015 J. Chem. Theory Comput. 11 1481Google Scholar

    [18]

    Becke A D 1988 Phys. Rev. A 38 3098Google Scholar

    [19]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [20]

    Bougherara H, Kadri R, Kadri M, Yekhlef M, Boumaza A 2021 J. Mol. Struct. 1223 128855Google Scholar

    [21]

    Viji A, Revathi B, Balachandran V, Babiyana S, Narayana B, Salian V V 2020 Chem.l Data Collections 30 100585Google Scholar

    [22]

    Goerigk L, Grimme S 2011 Phys. Chem. Chem. Phys. 13 6670Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 (Rev. A.02). (Gaussian: Inc., Wallingford CT)

    [24]

    Johnson E R, Kernan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J, Yang W T 2010 J. Am. Chem. Soc. 132 6498Google Scholar

    [25]

    施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林 2021 物理学报 70 053102Google Scholar

    Shi B, Yuan L, Tang T Y, Lu L M, Zhao X H, W X N, Tang Y L 2021 Acta Phys. Sin. 70 053102Google Scholar

    [26]

    Navarro R E, Santacruz H, Inoue M 2005 J. Inorg. Biochem. 99 584Google Scholar

    [27]

    Inoue M B, Inoue M, Fernando Q, Valcic S, Timmermann B N 2002 J. Inorg. Biochem. 88 7Google Scholar

    [28]

    Esparza I, Salinas I, Santamaria C, Garcia-Mina J M, Fernandez J M 2005 Anal. Chim. Acta 543 267Google Scholar

    [29]

    Lu T, Chen F W 2013 J. Phys. Chem. A. 117 3100Google Scholar

    [30]

    卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar

    Lu T, Chen F W 2012 Acta Phys.-Chim. Sin. 28 1Google Scholar

    [31]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [32]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics. 14 33Google Scholar

  • [1] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究. 物理学报, 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [2] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210400
    [3] 张恒, 黄燕, 石旺舟, 周孝好, 陈效双. Al原子在Si表面扩散动力学的第一性原理研究. 物理学报, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [4] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究. 物理学报, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [5] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [6] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [7] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [8] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究. 物理学报, 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [9] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [10] 刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科. 甲烷在不同分子筛中吸附的理论对比研究. 物理学报, 2012, 61(14): 146802. doi: 10.7498/aps.61.146802
    [11] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [12] 吕兵, 令狐荣锋, 宋晓书, 王晓璐, 杨向东, 贺端威. 氧原子在Pt(111)表面和次表层的吸附与扩散. 物理学报, 2012, 61(7): 076802. doi: 10.7498/aps.61.076802
    [13] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究. 物理学报, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [14] 张建军, 张红. Al吸附在Pt, Ir和Au的(111)面的低覆盖度研究. 物理学报, 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [15] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [16] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [17] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [18] 陈国栋, 王六定, 张教强, 曹得财, 安 博, 丁富才, 梁锦奎. 掺硼水吸附碳纳米管电子场发射性能的第一性原理研究. 物理学报, 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [19] 路战胜, 罗改霞, 杨宗献. Pd与CeO2(111)面的相互作用的第一性原理研究. 物理学报, 2007, 56(9): 5382-5388. doi: 10.7498/aps.56.5382
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  4085
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2021-02-03
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-06-20

/

返回文章
返回