搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外磁场中的粲偶素

龚闯 郭星雨

引用本文:
Citation:

外磁场中的粲偶素

龚闯, 郭星雨

Charmonia in an external magnetic field

Gong Chuang, Guo Xing-Yu
PDF
HTML
导出引用
  • 在相对论重离子碰撞早期, 会产生一个极强的磁场. 初始碰撞产生的粲偶素会受到磁场的影响, 进而携带磁场的信息. 本文利用磁场下的两体薛定谔方程研究磁场对粲偶素的影响. 利用角动量展开的方法, 数值计算了不同磁场强度下粲夸克偶素的能谱. 采取的方案是把三维波函数展开成不同轨道角动量以及自旋态的叠加, 实际计算过程中发现, 当$n\leqslant 2$, $l\leqslant 7$时能很好地满足精确度. 进一步, 哈密顿量可以写成$H=H_0+(qB)^2 H_1+qBP_{{\rm ps},\perp} H_2$形式, 其中$H_{0}$, $H_{1}$, $H_{2}$不依赖于B$P_{{\rm ps},\perp}$, 因此只要计算出$H_{0}$, $H_{1}$, $H_{2}$就能求出任意B$P_{{\rm ps},\perp}$下的哈密顿量. 这样的数值方法在保证计算精度的同时显著减少了计算量. 计算结果表明随着磁场和总动量的增加, 粲偶素的质量增大, 在磁场强度为$20m_{\pi}^{2}$, 总动量为$1.8\;{\rm {GeV}}$时, 质量的增加量为20%.
    Heavy ion collisions are an important method to study the quantum chromodynamics. In the early stage of relativistic heavy ion collisions, an extremely strong magnetic field is generated. The magnetic field will induce novel phenomena such as the chiral magnetic effect. However, the magnetic field will decrease rapidly, so it is difficult to measure its effect on the system. Charmonium states which are created by the initial scattering will be affected by the magnetic field and carry the information about it. We use the two-body Schrodinger equation with magnetic field to study the influence of the magnetic field on the charmonium state. The magnetic field is introduced via minimal coupling and its effect breaks the conservation of momentum and the conservation of angular momentum as well. The energy of the charmonium state depends not only on the magnetic field, but also on the momentum of the charmonium, thereby leading the final charmonium yield to be anisotropic. For a constant and homogeneous magnetic field, using the method of angular momentum expansion, we numerically calculate the energy spectra of the charm quark bound states with different magnetic field strengths and total momentum. The method is used to expand the three-dimensional wave function on the basis of different orbital angular momentum and spin states whose wave functions are numerically calculated first. In the actual calculation process, it is found that a good accuracy is achieved when taking $n\leqslant 2$, $l\leqslant 7$. Furthermore, the dependence of the Hamiltonian on the magnetic field and total momentum is analytically determined to be $H=H_0+(qB)^2 H_1+qBP_{{\rm{ps}},\perp} H_2$. Therefore, only the coefficient matrices $H_{1}$ and $H_{2}$ need to be numerically calculated once and the Hamiltonian with arbitrary magnetic field and momentum can be determined. The inverse power method is then used to find the lowest eigenvalue in the angular momentum space. Such a numerical method significantly reduces the amount of calculation and still ensures the accuracy of the calculation as well. The calculation results show that as the magnetic field and the total momentum increase, the mass of the charm element increases. The increase of the mass can be as large as $20\%$, when we take $eB = 20 m_{\rm{\pi}}^2$ and $P_{{\rm{ps}}}=1.8 \;{\rm{GeV }}$, which can be easily achieved in RHIC collisions. Therefore there should exist significant magnetic effect on the $J/\psi$ production in heavy ion collisions.
      通信作者: 郭星雨, guoxy@m.scnu.edu.cn
    • 基金项目: 广东省基础与应用基础重大项目(批准号: 2020B0301030008)和国家自然科学基金(批准号: 11905066)资助的课题
      Corresponding author: Guo Xing-Yu, guoxy@m.scnu.edu.cn
    • Funds: Project supported by the Major Projects of Basic and Applied Foundation of Guangdong Province, China (Grant No. 2020B0301030008) and the National Natural Science Foundation of China (Grant No. 11905066)
    [1]

    Collins J C, Perry M 1975 Phys. Rev. Lett 34 1353Google Scholar

    [2]

    Shuryak E V 1980 Phys. Rep. 61 71Google Scholar

    [3]

    Matsui T, Satz H 1986 Phys. Lett. B 178 416Google Scholar

    [4]

    Guo X Y, Shi S Z, Xu N, Xu Z, Zhuang P F 2015 Phys. Lett. B 751 215Google Scholar

    [5]

    Crater H W 1994 J. Comput. Phys. 115 470Google Scholar

    [6]

    Li G S, Zhou K, Chen B Y 2012 Phys. Rev. C 85 044907Google Scholar

    [7]

    Guo X Y, Shi S Z, Zhuang P F 2012 Phys. Lett. B 718 143Google Scholar

    [8]

    Asakawa M, Majumder A, Muller B 2010 Phys. Rev. C 81 064912Google Scholar

    [9]

    Fingberg J 1998 Phys. Lett. B 424 343Google Scholar

    [10]

    Peskina U, Steinberg M 1998 J. Chem. Phys. 109 704Google Scholar

    [11]

    施舒哲 2015 硕士学位论文 (北京: 清华大学物理系)

    Shi S Z 2015 M. S. Thesis (Beijing: Tsinghua University) (in Chinese)

    [12]

    Alford J, Strickland M 2013 Phys. Rev. D 88 105017Google Scholar

    [13]

    Rafelski J, Muller B 1976 Phys. Rev. Lett. 36 517Google Scholar

    [14]

    何航 2016 博士学位论文(北京: 清华大学物理系)

    He H 2016 Ph.D. Dissertation (Beijing: Tsinghua University) ( in Chinese)

    [15]

    Kharzeev D E, McLerran L D, Warringa H J 2008 Nucl. Phys. A 803 227Google Scholar

    [16]

    Kharzeev D E 2010 Annals Phys. 325 205Google Scholar

    [17]

    Gusynin V P, Miransky V A, Shovkovy I A 1994 Phys. Rev. Lett. 73 3499Google Scholar

    [18]

    Teller E 1937 J. Phys. Chem. 41 109Google Scholar

    [19]

    Vogt R 2002 Nucl. Phys. A 700 539Google Scholar

    [20]

    Olver F W, Daniel L W, Ronald F B, Charles W C 2010 NIST Handbook of Mathematical Functions (Cambridge: Cambridge University Press) pp351−382

    [21]

    Kawanai T, Sasaki S 2012 Phys. Rev. D 85 091503Google Scholar

  • 图 1  $qB=10 m_{\pi}^{2}$, $P_{\rm kin}=1\; {\rm GeV}$$l=7$$l=6$的本征态

    Fig. 1.  The eigenstates of $l=7$ and $l=6$ at $qB=10 m_{\pi}^{2}$ and $P_{\rm kin}=1 \; {\rm GeV}$

    图 2  $qB=0 m_{\pi}^{2}$(红色), $qB=5 m_{\pi}^{2}$(蓝色), $qB=10 m_{\pi}^{2}$(黑色), $qB=15 m_{\pi}^{2}$(橙色), $qB=20 m_{\pi}^{2}$(绿色)下, $J/\psi^{}$粒子的质量随$\langle P_{{\rm kin}, \perp}\rangle$的变化图像

    Fig. 2.  The momentum $\langle P_{{\rm kin}, \perp}\rangle$ dependence of mass m and electric dipole moment $q \langle y \rangle$ for $J/\psi^{\pm}$ in magnet field with $qB = 0$(dashed black), 5(red), 10 (blue), 15 (violet) and 20 (orange)$m_{\pi}^{2}$

  • [1]

    Collins J C, Perry M 1975 Phys. Rev. Lett 34 1353Google Scholar

    [2]

    Shuryak E V 1980 Phys. Rep. 61 71Google Scholar

    [3]

    Matsui T, Satz H 1986 Phys. Lett. B 178 416Google Scholar

    [4]

    Guo X Y, Shi S Z, Xu N, Xu Z, Zhuang P F 2015 Phys. Lett. B 751 215Google Scholar

    [5]

    Crater H W 1994 J. Comput. Phys. 115 470Google Scholar

    [6]

    Li G S, Zhou K, Chen B Y 2012 Phys. Rev. C 85 044907Google Scholar

    [7]

    Guo X Y, Shi S Z, Zhuang P F 2012 Phys. Lett. B 718 143Google Scholar

    [8]

    Asakawa M, Majumder A, Muller B 2010 Phys. Rev. C 81 064912Google Scholar

    [9]

    Fingberg J 1998 Phys. Lett. B 424 343Google Scholar

    [10]

    Peskina U, Steinberg M 1998 J. Chem. Phys. 109 704Google Scholar

    [11]

    施舒哲 2015 硕士学位论文 (北京: 清华大学物理系)

    Shi S Z 2015 M. S. Thesis (Beijing: Tsinghua University) (in Chinese)

    [12]

    Alford J, Strickland M 2013 Phys. Rev. D 88 105017Google Scholar

    [13]

    Rafelski J, Muller B 1976 Phys. Rev. Lett. 36 517Google Scholar

    [14]

    何航 2016 博士学位论文(北京: 清华大学物理系)

    He H 2016 Ph.D. Dissertation (Beijing: Tsinghua University) ( in Chinese)

    [15]

    Kharzeev D E, McLerran L D, Warringa H J 2008 Nucl. Phys. A 803 227Google Scholar

    [16]

    Kharzeev D E 2010 Annals Phys. 325 205Google Scholar

    [17]

    Gusynin V P, Miransky V A, Shovkovy I A 1994 Phys. Rev. Lett. 73 3499Google Scholar

    [18]

    Teller E 1937 J. Phys. Chem. 41 109Google Scholar

    [19]

    Vogt R 2002 Nucl. Phys. A 700 539Google Scholar

    [20]

    Olver F W, Daniel L W, Ronald F B, Charles W C 2010 NIST Handbook of Mathematical Functions (Cambridge: Cambridge University Press) pp351−382

    [21]

    Kawanai T, Sasaki S 2012 Phys. Rev. D 85 091503Google Scholar

  • [1] 朱宇豪, 袁翔, 吴勇, 王建国. 质子碰撞硼原子非辐射的电荷转移过程. 物理学报, 2023, 72(16): 163401. doi: 10.7498/aps.72.20230470
    [2] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [3] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [4] 周铭杰, 谭海云, 周岩, 诸葛兰剑, 吴雪梅. 一种基于束缚态的可调等离子体光子晶体窄带滤波器. 物理学报, 2021, 70(17): 175201. doi: 10.7498/aps.70.20210241
    [5] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模. 物理学报, 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [6] 陆法林, 陈昌远, 尤源. 双环形Hulthn势束缚态的近似解析解. 物理学报, 2013, 62(20): 200301. doi: 10.7498/aps.62.200301
    [7] 丁丁, 何斌, 屈世显, 王建国. 强磁场下He2++H(1s)的碰撞电离微分截面及电离机理研究. 物理学报, 2013, 62(3): 033401. doi: 10.7498/aps.62.033401
    [8] 张民仓, 王振邦. 一类环状非球谐振子势场中相对论粒子的束缚态解. 物理学报, 2007, 56(7): 3688-3692. doi: 10.7498/aps.56.3688
    [9] 张民仓, 王振邦. Manning-Rosen标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态. 物理学报, 2006, 55(2): 521-524. doi: 10.7498/aps.55.521
    [10] 许晓军, 魏高尧, 蔡萍根, 金进生, 夏阿根, 叶高翔. 具有幂次相互作用的磁性粒子凝聚过程的数值研究. 物理学报, 2006, 55(8): 4039-4045. doi: 10.7498/aps.55.4039
    [11] 张民仓, 王振邦. Makarov势的Dirac方程的束缚态解. 物理学报, 2006, 55(12): 6229-6233. doi: 10.7498/aps.55.6229
    [12] 张民仓, 王振邦. 第二类P?schl-Teller势场中相对论粒子的束缚态. 物理学报, 2006, 55(2): 525-528. doi: 10.7498/aps.55.525
    [13] 陈子栋, 陈 刚. Hartmann势的Klein-Gordon方程束缚态解及递推关系. 物理学报, 2005, 54(6): 2524-2527. doi: 10.7498/aps.54.2524
    [14] 李 宁, 鞠国兴, 任中洲. 一类相对论性非球谐振子系统的束缚态. 物理学报, 2005, 54(6): 2520-2523. doi: 10.7498/aps.54.2520
    [15] 陈 刚. 具有Wood-Saxon势的Dirac方程的束缚态. 物理学报, 2004, 53(3): 680-683. doi: 10.7498/aps.53.680
    [16] 陈 刚. Rosen-Morse势阱中相对论粒子的束缚态. 物理学报, 2004, 53(3): 684-687. doi: 10.7498/aps.53.684
    [17] 陈昌远, 刘成林, 陆法林, 孙东升. 具有n维氢原子型标量势与矢量势的Klein-Gordon方程的束缚态. 物理学报, 2003, 52(7): 1579-1584. doi: 10.7498/aps.52.1579
    [18] 陈 刚, 楼智美. 四参数双原子分子势阱中相对论粒子的束缚态. 物理学报, 2003, 52(5): 1075-1078. doi: 10.7498/aps.52.1075
    [19] 陈 刚, 楼智美. 无反射势阱中相对论粒子的束缚态. 物理学报, 2003, 52(5): 1071-1074. doi: 10.7498/aps.52.1071
    [20] 郭建友. tan~2(πηr)型势阱中相对论粒子的束缚态. 物理学报, 2002, 51(7): 1453-1457. doi: 10.7498/aps.51.1453
计量
  • 文章访问数:  3367
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-04-13
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回