搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒超强激光驱动太赫兹辐射特性的实验研究

王天泽 雷弘毅 孙方正 王丹 廖国前 李玉同

引用本文:
Citation:

飞秒超强激光驱动太赫兹辐射特性的实验研究

王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同

Experimental study of terahertz radiation driven by femtosecond ultraintense laser

Wang Tian-Ze, Lei Hong-Yi, Sun Fang-Zheng, Wang Dan, Liao Guo-Qian, Li Yu-Tong
PDF
HTML
导出引用
  • 强太赫兹源是太赫兹科学技术发展的关键, 其中大能量强场太赫兹脉冲源在超快物态调控、新型电子加速器等领域具有重要的应用前景. 超快超强激光与等离子体相互作用是近年来发展起来的一种新型的强场太赫兹辐射产生途径. 本文报道了利用超强飞秒激光脉冲与金属薄膜靶作用产生太赫兹辐射的实验结果, 研究了激光能量和离焦量对靶后太赫兹辐射能量的影响, 并通过监测激光背向散射光谱, 定性揭示了其变化规律与不同光强下的电子加热机制的相关性. 实验表征了太赫兹辐射的频谱、偏振及聚焦光斑情况. 测量结果表明, 实验产生了脉冲能量达458 μJ、聚焦场强高达GV/m量级的超宽带太赫兹辐射, 为开展极端太赫兹脉冲与物质相互作用研究提供了一种新的强场太赫兹光源.
    Powerful terahertz (THz) radiation sources are crucial to the development of THz science. High-energy strong-field THz pulses have many significant applications such as in the ultrafast control of matter and the THz-driven electron acceleration. In recent years, ultraintense laser-plasma interactions have been proposed as a novel approach to strong-field THz generation. In this paper, the experimental results are presented about the generation of THz radiation from a solid foil irradiated by a 10-TW femtosecond laser pulse. The THz energy as a function of laser energy and defocusing amount is studied. It is found that both the THz energy and the laser-to-THz conversion efficiency increase nonlinearly with the laser energy increasing. At maximum laser energy ~270 mJ, the measured THz pulse energy is 458 μJ, corresponding to a laser-to-THz energy conversion efficiency of 0.17%. No indication of saturation is observed in the experiment, implying that a stronger THz radiation could be achieved with higher laser energy. By simultaneously monitoring the backward scattered laser light spectrum, it is qualitatively understood that the observed THz radiation as a function of laser energy and laser defocusing distance is closely related to the electron heating mechanisms at different laser intensities. The THz spectrum and polarization are characterized by using different band-pass filers and a wire-grid polarizer, respectively. The THz radiation covers an ultrabroad band ranging from 0.2 THz to 30 THz, and shows a radially polarized distribution. By fitting the measured THz spectrum with the theory of coherent transition radiation, the THz pulse duration is inferred to be about 30 fs. At the THz focal spot of ~1 mm in size, the THz field strength is evaluated to be 3.68 GV/m. Such a strong-field THz source will enable the study of extreme THz-matter interactions.
      通信作者: 廖国前, gqliao@iphy.ac.cn ; 李玉同, ytli@iphy.ac.cn
    • 基金项目: 科学挑战计划(批准号: TZ2016005)、国家自然科学基金(批准号: 92050106, 11827807)和中科院先导研究计划(批准号: XDB16010200, XDA25010000)资助的课题
      Corresponding author: Liao Guo-Qian, gqliao@iphy.ac.cn ; Li Yu-Tong, ytli@iphy.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005), the National Natural Science Foundation of China (Grant Nos. 92050106, 11827807), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB16010200, XDA25010000)
    [1]

    Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D: Appl. Phys. 50 043001Google Scholar

    [2]

    Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345Google Scholar

    [3]

    LaRue J L, Katayama T, Lindenberg A, Fisher A S, Ostrom H, Nilsson A, Ogasawara H 2015 Phys. Rev. Lett. 115 036103Google Scholar

    [4]

    Zhao L R, Tang H, Lu C, Jiang T, Zhu P F, Hu L, Song W, Wang H D, Qiu J Q, Jing C G, Antipov S, Xiang D, Zhang J 2020 Phys. Rev. Lett. 124 054802Google Scholar

    [5]

    Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H, Lindenberg A 2013 Rev. Sci. Instrum. 84 022701Google Scholar

    [6]

    Zhang B, Ma Z, Ma J, Wu X, Ouyang C, Kong D, Hong T, Wang X, Yang P, Chen L, Li Y, Zhang J 2021 Laser Photon. Rev. 15 2000295

    [7]

    Vicario C, Ovchinnikov A V, Ashitkov S I, Agranat M B, Fortov V E, Hauri C P 2014 Opt. Lett. 39 6632Google Scholar

    [8]

    Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [9]

    Liao G Q, Liu H, Scott G G, et al. 2020 Phys. Rev. X 10 031062

    [10]

    Gopal A, Singh P, Herzer S, Reinhard A, Schmidt A, Dillner U, May T, Meyer H G, Ziegler W, Paulus G G 2013 Opt. Lett. 38 4705Google Scholar

    [11]

    Zeng Y S, Zhou C L, Song L W, Lu X M, Li Z P, Ding Y Y, Bai Y F, Xu Y, Leng Y X, Tian Y, Liu J S, Li R X, Xu Z Z 2020 Opt. Express 28 15258Google Scholar

    [12]

    Liao G Q, Li Y T, Li C, et al. 2015 Phys. Rev. Lett. 114 255001Google Scholar

    [13]

    Liao G Q, Li Y T, Zhang Y H, et al. 2016 Phys. Rev. Lett. 116 205003Google Scholar

    [14]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby D R, McKenna P, Brenner C M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. U.S.A. 116 3994Google Scholar

    [15]

    Woldegeorgis A, Herzer S, Almassarani M, Marathapalli S, Gopal A 2019 Phys. Rev. E 100 053204Google Scholar

    [16]

    Zhang J, Li Y T, Sheng Z M, Wei Z Y, Dong Q L, Lu X 2005 Appl. Phys. B 80 957

    [17]

    Gaeta A L 2000 Phys. Rev. Lett. 84 3582Google Scholar

    [18]

    Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phys. Rev. Lett. 102 045008Google Scholar

    [19]

    Schroeder C B, Esarey E, van Tilborg J, Leemans W P 2004 Phys. Rev. E 69 016501Google Scholar

    [20]

    Casalbuoni S, Schlarb H, Schmidt B, Schmüser P, Steffen B, Winter A 2008 Phys. Rev. Spec. Top. Accel. Beams 11 072802Google Scholar

    [21]

    Liu H, Liao G Q, Zhang Y H, et al. 2019 High Power Laser Sci. Eng. 7 e6 7Google Scholar

    [22]

    Zheng J, Tanaka K A, Miyakoshi T, Kitagawa Y, Kodama R, Kurahashi T, Yamanaka T 2003 Phys. Plasmas 10 2994Google Scholar

    [23]

    Gopal A, May T, Herzer S, et al. 2012 New J. Phys. 14 083012Google Scholar

  • 图 1  实验布局示意图

    Fig. 1.  Schematic of the experimental layout.

    图 2  太赫兹能量与激光能量及激光背向散射光的关系 (a) 太赫兹能量(红色方块)和激光-太赫兹能量转换率(蓝色方块)随激光能量的变化; (b) 不同激光能量下的背向散射光光谱

    Fig. 2.  Relationship between THz energy, laser energy and laser back scattered light: (a) Dependence of THz energy (red square) and THz-laser efficiency (blue square) on the laser energy; (b) laser back scattered light spectra at different laser energy.

    图 3  太赫兹能量、激光光强及激光背向散射光与激光离焦量的关系 (a) 太赫兹能量(红色圆点)和激光光强(黑色方块)随激光离焦量D的变化; (b) 不同离焦量对应的激光散射光光谱

    Fig. 3.  Relationship between THz energy, laser intensity, laser back scattered light, and laser defocus: (a) THz energy (red dot) and laser intensity (black square) as a function of the laser defocus distance D; (b) laser back scattered light spectra at different laser defocus distance.

    图 4  太赫兹频谱、偏振及光斑表征 (a) 使用带通滤片测得的太赫兹频谱(棕色方块)以及根据CTR理论使用实验参数拟合得到的理论频谱(黑色实线); (b) 使用太赫兹偏振片测得的太赫兹偏振分布; (c) 使用太赫兹相机测得的太赫兹光斑(左), 旋转相机阵面90°后测得的太赫兹光斑(右), 图中黄色箭头为太赫兹相机偏振敏感方向

    Fig. 4.  Characterization of THz spectrum, polarization and profile: (a) THz spectrum measured by band-pass filters (brown square) and fitted with the CTR theory (black line); (b) THz polarization distribution measured by a THz polarizer; (c) THz spot profile measured by a THz camera.

  • [1]

    Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D: Appl. Phys. 50 043001Google Scholar

    [2]

    Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345Google Scholar

    [3]

    LaRue J L, Katayama T, Lindenberg A, Fisher A S, Ostrom H, Nilsson A, Ogasawara H 2015 Phys. Rev. Lett. 115 036103Google Scholar

    [4]

    Zhao L R, Tang H, Lu C, Jiang T, Zhu P F, Hu L, Song W, Wang H D, Qiu J Q, Jing C G, Antipov S, Xiang D, Zhang J 2020 Phys. Rev. Lett. 124 054802Google Scholar

    [5]

    Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H, Lindenberg A 2013 Rev. Sci. Instrum. 84 022701Google Scholar

    [6]

    Zhang B, Ma Z, Ma J, Wu X, Ouyang C, Kong D, Hong T, Wang X, Yang P, Chen L, Li Y, Zhang J 2021 Laser Photon. Rev. 15 2000295

    [7]

    Vicario C, Ovchinnikov A V, Ashitkov S I, Agranat M B, Fortov V E, Hauri C P 2014 Opt. Lett. 39 6632Google Scholar

    [8]

    Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [9]

    Liao G Q, Liu H, Scott G G, et al. 2020 Phys. Rev. X 10 031062

    [10]

    Gopal A, Singh P, Herzer S, Reinhard A, Schmidt A, Dillner U, May T, Meyer H G, Ziegler W, Paulus G G 2013 Opt. Lett. 38 4705Google Scholar

    [11]

    Zeng Y S, Zhou C L, Song L W, Lu X M, Li Z P, Ding Y Y, Bai Y F, Xu Y, Leng Y X, Tian Y, Liu J S, Li R X, Xu Z Z 2020 Opt. Express 28 15258Google Scholar

    [12]

    Liao G Q, Li Y T, Li C, et al. 2015 Phys. Rev. Lett. 114 255001Google Scholar

    [13]

    Liao G Q, Li Y T, Zhang Y H, et al. 2016 Phys. Rev. Lett. 116 205003Google Scholar

    [14]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby D R, McKenna P, Brenner C M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. U.S.A. 116 3994Google Scholar

    [15]

    Woldegeorgis A, Herzer S, Almassarani M, Marathapalli S, Gopal A 2019 Phys. Rev. E 100 053204Google Scholar

    [16]

    Zhang J, Li Y T, Sheng Z M, Wei Z Y, Dong Q L, Lu X 2005 Appl. Phys. B 80 957

    [17]

    Gaeta A L 2000 Phys. Rev. Lett. 84 3582Google Scholar

    [18]

    Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phys. Rev. Lett. 102 045008Google Scholar

    [19]

    Schroeder C B, Esarey E, van Tilborg J, Leemans W P 2004 Phys. Rev. E 69 016501Google Scholar

    [20]

    Casalbuoni S, Schlarb H, Schmidt B, Schmüser P, Steffen B, Winter A 2008 Phys. Rev. Spec. Top. Accel. Beams 11 072802Google Scholar

    [21]

    Liu H, Liao G Q, Zhang Y H, et al. 2019 High Power Laser Sci. Eng. 7 e6 7Google Scholar

    [22]

    Zheng J, Tanaka K A, Miyakoshi T, Kitagawa Y, Kodama R, Kurahashi T, Yamanaka T 2003 Phys. Plasmas 10 2994Google Scholar

    [23]

    Gopal A, May T, Herzer S, et al. 2012 New J. Phys. 14 083012Google Scholar

  • [1] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生. 物理学报, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [2] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制. 物理学报, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像. 物理学报, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [5] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究. 物理学报, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [6] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [7] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [8] 张铠云, 杜海伟, 陈民, 盛政明. 基于光场离化电流机制产生强太赫兹辐射的参数优化研究. 物理学报, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [9] 吴岱, 刘文鑫, 唐传祥, 黎明. 用于频域方法测量超短电子束纵向分布的Kramers-Krnig变换研究. 物理学报, 2011, 60(8): 082901. doi: 10.7498/aps.60.082901
    [10] 李百文, 田恩科. 强激光与等离子体相互作用中受激陷俘电子声波散射及相空间离子涡旋的形成. 物理学报, 2007, 56(8): 4749-4761. doi: 10.7498/aps.56.4749
    [11] 王光昶, 郑志坚, 谷渝秋, 陈 涛, 张 婷. 利用渡越辐射研究超热电子在固体靶中的输运过程. 物理学报, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [12] 谭世杰, 郑 坚. 不同加热机制产生的超热电子的相干渡越辐射谐波研究. 物理学报, 2007, 56(12): 7132-7137. doi: 10.7498/aps.56.7132
    [13] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [14] 远晓辉, 李玉同, 徐妙华, 于全芝, 王首钧, 张 杰, 赵 卫, 王光昶, 温贤伦, 焦春晔, 何颖伶, 张双根, 王向贤, 黄文忠, 谷渝秋. 超热电子产生的靶后相干渡越辐射光谱实验研究. 物理学报, 2006, 55(10): 5362-5367. doi: 10.7498/aps.55.5362
    [15] 王光昶, 郑志坚, 杨向东, 谷渝秋, 刘宏杰, 温天舒, 葛芳芳, 焦春晔, 周维民, 张双根, 王向贤. 超短超强激光与固体靶相互作用中背表面光发射的实验研究. 物理学报, 2005, 54(10): 4803-4807. doi: 10.7498/aps.54.4803
    [16] 盛政明, 张 杰, 余 玮. 强激光与等离子体相互作用中低频电磁场孤子波的产生及其捕获. 物理学报, 2003, 52(1): 125-134. doi: 10.7498/aps.52.125
    [17] 蒋华北. 受激渡越辐射光学速调管. 物理学报, 1990, 39(1): 61-66. doi: 10.7498/aps.39.61-2
    [18] 马锦秀, 徐至展. 双频强激光与等离子体相互作用中的双稳态效应. 物理学报, 1989, 38(5): 706-713. doi: 10.7498/aps.38.706
    [19] 屈卫星, 徐至展. 产生于铍箔组的渡越辐射量子微分谱的理论计算. 物理学报, 1988, 37(6): 892-898. doi: 10.7498/aps.37.892
    [20] 刘盛纲, 孙雁. 渡越辐射自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
计量
  • 文章访问数:  5894
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-04-12
  • 上网日期:  2021-04-14
  • 刊出日期:  2021-04-20

/

返回文章
返回