搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能电子三维成像技术实验研究

李双双 赵全堂 曹树春 冉朝晖 申晓康 赵书俊 张子民

引用本文:
Citation:

高能电子三维成像技术实验研究

李双双, 赵全堂, 曹树春, 冉朝晖, 申晓康, 赵书俊, 张子民

Experimental demonstration of three-dimensional high energy electron radiography

Li Shuang-Shuang, Zhao Quan-Tang, Cao Shu-Chun, Ran Zhao-Hui, Shen Xiao-Kang, Zhao Shu-Jun, Zhang Zi-Min
PDF
HTML
导出引用
  • 高能电子成像技术被首次提出作为温稠密物质和惯性约束聚变实验研究的高时空分辨诊断工具之一, 现已通过前期实验证明其对中尺度科学诊断的可行性. 为了进一步提高高能电子成像技术诊断样品的能力, 来获取样品内部信息, 将高能电子成像技术和三维重建算法结合, 提出了高能电子三维成像技术. 本文主要通过实验研究了高能电子三维成像技术的可行性. 不同三维重建算法重建样品的结果首次证实了高能电子三维成像技术的可行性, 使用的三维重建算法包括滤波反投影算法、迭代算法-代数重建技术和联立代数重建技术, 最终重建的x, y, z方向上的不同重建切片图像清楚地显示了样品的详细结构. 实验证实的高能电子三维成像技术将有利于拓展高能电子成像技术的应用领域, 尤其是在中尺度科学领域.
    High energy electron radiography (HEER) proposed first for real-time high spatial and temporal resolution diagnosis of warm dense matter (WDM) and inertial confinement fusion (ICF) has proved experimentally feasible for mesoscale sciences diagnosis. Until now, the spatial resolution of the images close to 1 μm has been reached experimentally which is better than that of X-rays and neutron radiography. However, traditional HEER obtains two-dimensional images which cannot accurately present the three-dimensional structure of the sample. To further improve the capability of HEER to diagnose and obtain the internal information of samples, three-dimensional high energy electron radiography (TDHEER) was put forward by combining HEER with three-dimensional (3D) reconstruction tomography technology. The validity and usage of the TDHEER method have been confirmed through simulation of the fully 3D diagnostic of static mesoscale sample. This paper focuses mainly on the experimental demonstration of the 3D high energy electron radiography. The feasibility of TDHEER is for the first time confirmed by the results achieved with different 3D reconstruction algorithms. The 3D reconstruction algorithms, analytical algorithm-filtered back projection (FBP), iterative algorithms-algebraic reconstruction technique (ART), and simultaneous algebraic reconstruction technique (SART) are used here. In this experiment, the less projected data are used, so it takes the less time to obtain two-dimensional (2D) HEER images and the reconstruction. In order to spend the time as little as possible and obtain the satisfactory quality of reconstruction result, there are three groups of projected image sets, 180, 36 and 18, acquired in our experiment. When all three algorithms are adopted in 180 projected images, the reconstructed images show that all three algorithms FBP, ART and SART are feasible for TDHEER. The different reconstructed slice images of the sample in X-, Y-, and Z- direction clearly show the detailed structure of the sample. The images reconstructed by ART and SART algorithm are equivalent. Comparing with ART and SART, the reconstruction results by FBP can show more details, but there are some artifacts. Because the 36 2D HEER images fail to satisfy the Nyquist sampling theory, the analytic algorithm FBP is not used. Taking the result of FBP reconstructed by 180 images as a standard reference to compare the result of ART with the results of SART, the images reconstructed by the SART algorithm are closer to the original images. Testing 18 images, the results of the ART and SART both have lots of artifacts but the SART algorithm spends less time in reconstruction. As fewer projected images are used, more artifacts are found in the reconstructed images. Therefore, it is advantageous to combine the SART algorithm with 36 HEER projected images, which obtains high-quality reconstruction images and spends less time. The feasibility of TDHEER is confirmed experimentally for the first time and all three dimensions of the sample structures are obtained. Of the three different 3D reconstruction algorithms, the SART algorithm is the most suitable for reconstructing the few-view images. The TDHEER technology will extend HEER’s application fields, especially for mesoscale sciences.
      通信作者: 赵全堂, zhaoquantang@impcas.ac.cn ; 赵书俊, zhaosj@zzu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0404900)、国家自然科学基金(批准号: 11875303)和中国科学院国际合作局对外合作重点项目(批准号: 113462KYSB20160036)资助的课题
      Corresponding author: Zhao Quan-Tang, zhaoquantang@impcas.ac.cn ; Zhao Shu-Jun, zhaosj@zzu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0404900), the National Natural Science Foundation of China (Grant No. 11875303), and the Key Program of the International Partnership of Bureau of International Cooperation Chinese Academy of Sciences (Grant No. 113462KYSB20160036)
    [1]

    Wei G, Qiu J, Jing C 2014 Pro. SPIE 9211 921104

    [2]

    Zhao Y T, Zhang Z, Gai W, et al. 2016 Laser Part. Beams 34 338Google Scholar

    [3]

    Merrill F, Harmon F, Hunt A, Mariam F, Morley K, Morris C, Saunders A, Schwartz C 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 382Google Scholar

    [4]

    Zhao Q T, Cao S C, Cheng R, Shen X K, Zhang Z M, Zhao Y T, Gai W, Du Y C 2014 Proceedings of the LINAC2014 Geneva, Switzerland, August 31–September 5, 2014 p76

    [5]

    Zhao Q T, Cao S C, Liu M, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 832 144Google Scholar

    [6]

    Zhou Z, Du Y C, Cao S C, et al. 2018 Phys. Rev. Accel. Beams 21 074701Google Scholar

    [7]

    Zhao Q T, Cao S. C, Cheng R, et al. 2018 Laser Part. Beams 36 313Google Scholar

    [8]

    Zhao Q T, Cao S C, Shen X K, Wang Y R, Zong Y, Xiao J H, Zhu Y L, Zhou Y W, Liu M, Cheng R, Zhao Y T, Zhang Z M, Gai W 2017 Laser Part. Beams 35 579Google Scholar

    [9]

    Zhou Z, Fang Y, Chen H, Wu Y P, Du Y C, Yan L X, Tang C X, Huang W H 2019 Phys. Rev. Appl. 11 034068Google Scholar

    [10]

    Maddox B R, Park H S, Remington B A, et al. 2011 Phys. Plasmas 18 168Google Scholar

    [11]

    Park H S, Maddox B R, Giraldez E, et al. 2008 Phys. Plasmas 15 3048Google Scholar

    [12]

    Tian C, Yu M H, Shan L Q, Wu Y C, Zhang T K, Bi B, Zhang F, Zhang Q Q, Liu D X, Wang W W, Yuan Z Q, Yang S Q, Yang L, Zhou W M, Gu Y Q, Zhang B H 2019 Nucl. Fusion 59 046012Google Scholar

    [13]

    Higginson D P, Vassura L, Gugiu M, et al. 2015 Phys. Rev. Lett. 115 054802Google Scholar

    [14]

    Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J 2009 J. Phys. D: Appl. Phys. 42 243001Google Scholar

    [15]

    Merrill F E, Bower D, Buckles R, et al. 2012 Rev. Sci. Instrum. 83 051003Google Scholar

    [16]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Methods Phys. Res., Sect. A 424 84Google Scholar

    [17]

    Zhao Q T, Ma Y Y, Xiao J H, Cao S C, Zhang Z M 2019 Appl. Sci. 9 3764Google Scholar

    [18]

    谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王锋, 顾树棣, 过雅南 2003 粒子探测器与数据获取 (北京: 科学出版社) 第5−16页

    Xie Y G, Cheng C, Wang M, Lv J G, Meng X G, Wang F, Gu S D, Guo Y N 2003 Particle Detector and Data Acquisition (Beijing: Science Press) pp5−16 (in Chinese)

    [19]

    Padole A, Khawaja Rd Ali, Kalra M K, Singh S 2015 Am. J. Roentgenol. 204 384Google Scholar

    [20]

    Chen B X, Yang M, Zhang Z, Bian J G, Han X, Sidky E, Pan X C 2014 Biochim. Biophys. Acta 1581 1856Google Scholar

    [21]

    Schofield R, King L, Tayal U, Castellano I, Stirrup J, Pontana F, Earls J, Nicol E 2020 J. Cardiovasc Comput Tomogr. 14 219Google Scholar

    [22]

    Gordon R, Bender R, Herman G T 1970 J. Theor. Biol. 29 471Google Scholar

    [23]

    Trampert J, Leveque J J 1990 J. Geophys. Res. B:Solid Earth 95 12553Google Scholar

    [24]

    Zhu Y L, Yuan P, Cao S C, et al. 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 911 74Google Scholar

    [25]

    Blackledget J M 2006 Digital Signal Processing (2nd Ed.) (Cambridge: Woodhead Press) pp522−540

    [26]

    拉斐尔C, 理查E, 史蒂文L 著 (阮秋琦 译) 2014 数字图像处理(MATLAB版) (第二版) (北京: 电子工业出版社) 第45−48页

    Rafael C, Richard E, Steven L (translated by Ruan Q Q) 2014 Digital Image Processing Using MATLAB (2nd Ed.) (Beijing: Electronics Industry Press) pp45−48 (in Chinese)

    [27]

    Vetterli M, Herley C 1992 IEEE Trans. Acoust., Speech, Signal Process 40 2207Google Scholar

    [28]

    Zhang Y, Zhang W H, Lei Y J, Zhou J L 2014 J. Opt. Soc. Am. A 31 981Google Scholar

    [29]

    Soleimani M., Pengpen T 2015 Philos Trans. R. Dov. London, Ser. A 373 20140399Google Scholar

    [30]

    Sidky E Y, Kao C M, Pan X C 2009 J. X-Ray Sci. Technol. 14 119Google Scholar

    [31]

    Liu Y, Ma J H, Fan Y, Liang Z R 2012 Phys. Med. Biol. 57 7923Google Scholar

    [32]

    Deng L Z, Mi D L, He P, Feng P, Yu P W, Chen M Y, Li Z C, Wang J, Wei B 2015 Bio-med. Mater. Eng. 26 1685Google Scholar

  • 图 1  HEER的布局原理图

    Fig. 1.  Layout and principle of HEER.

    图 2  获取2D HEER数据的实验原理

    Fig. 2.  Experimental principle of acquiring 2D HEER data.

    图 3  实验样品 (a) 正视图; (b) 左视图; (c) 3D坐标系

    Fig. 3.  Experimental sample: (a) The front view; (b) the left view; (c) the 3D coordinate diagram.

    图 4  2D HEER图像 (a)−(d) 旋转角度分别为0º, 45º, 135º和 180º

    Fig. 4.  2D HEER images: (a)−(d) Rotation angle is 0º, 45º, 135º, 180º, respectively.

    图 5  X–到X+在第95, 134和145层使用不同算法重建的切片的结果 (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART

    Fig. 5.  Results of reconstructed slices with different algorithms, at the 95th, 134th and 145th layers from X– to X+: (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART.

    图 6  Y–到Y+的第89, 124和150层使用不同算法重建的切片的结果 (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART

    Fig. 6.  Results of reconstructed slices with different algorithms, at the 89th, 124th and 150th layers from Y– to Y+: (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART.

    图 7  Z–到Z+在第52, 122和155层使用不同算法重建的切片的结果 (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART

    Fig. 7.  Results of reconstructed slices with different algorithms, at the 52nd, 122th and 155th layers from Z– to Z+: (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART.

    图 8  (a) FBP重建的从Y–到Y +第124个切片图像; (b) 是(a)中红线的像素灰度分布图

    Fig. 8.  (a) The 124th slice image from Y– to Y+ reconstructed by FBP; (b) the pixels grayscale of the red line of panel (a).

    图 9  Y–到Y+的第100层和第127层使用不同的算法得出的结果 (a), (b) ART; (c), (d) SART

    Fig. 9.  Reconstructed slices results with different algorithms, at the 100th and 127th layers from Y– to Y+: (a), (b) ART; (c), (d) SART.

    图 10  Y–到Y +在第127层重建切片的结果 (a) ART; (b) SART; (c) 是(b)中红线的像素灰度分布

    Fig. 10.  Results of reconstructed slices at the 127th layer from Y– to Y+: (a) ART; (b) SART; (c) the pixels grayscale of the red line of panel (b).

    表 1  ART, SART重建切片的dr

    Table 1.  Value of d and r of the image reconstructed by ART and SART.

    切片位置重建算法dr
    Y 100thART11.07360.8820
    SART10.90600.8672
    Y 127thART9.09470.9076
    SART8.95200.8933
    下载: 导出CSV
  • [1]

    Wei G, Qiu J, Jing C 2014 Pro. SPIE 9211 921104

    [2]

    Zhao Y T, Zhang Z, Gai W, et al. 2016 Laser Part. Beams 34 338Google Scholar

    [3]

    Merrill F, Harmon F, Hunt A, Mariam F, Morley K, Morris C, Saunders A, Schwartz C 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 382Google Scholar

    [4]

    Zhao Q T, Cao S C, Cheng R, Shen X K, Zhang Z M, Zhao Y T, Gai W, Du Y C 2014 Proceedings of the LINAC2014 Geneva, Switzerland, August 31–September 5, 2014 p76

    [5]

    Zhao Q T, Cao S C, Liu M, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 832 144Google Scholar

    [6]

    Zhou Z, Du Y C, Cao S C, et al. 2018 Phys. Rev. Accel. Beams 21 074701Google Scholar

    [7]

    Zhao Q T, Cao S. C, Cheng R, et al. 2018 Laser Part. Beams 36 313Google Scholar

    [8]

    Zhao Q T, Cao S C, Shen X K, Wang Y R, Zong Y, Xiao J H, Zhu Y L, Zhou Y W, Liu M, Cheng R, Zhao Y T, Zhang Z M, Gai W 2017 Laser Part. Beams 35 579Google Scholar

    [9]

    Zhou Z, Fang Y, Chen H, Wu Y P, Du Y C, Yan L X, Tang C X, Huang W H 2019 Phys. Rev. Appl. 11 034068Google Scholar

    [10]

    Maddox B R, Park H S, Remington B A, et al. 2011 Phys. Plasmas 18 168Google Scholar

    [11]

    Park H S, Maddox B R, Giraldez E, et al. 2008 Phys. Plasmas 15 3048Google Scholar

    [12]

    Tian C, Yu M H, Shan L Q, Wu Y C, Zhang T K, Bi B, Zhang F, Zhang Q Q, Liu D X, Wang W W, Yuan Z Q, Yang S Q, Yang L, Zhou W M, Gu Y Q, Zhang B H 2019 Nucl. Fusion 59 046012Google Scholar

    [13]

    Higginson D P, Vassura L, Gugiu M, et al. 2015 Phys. Rev. Lett. 115 054802Google Scholar

    [14]

    Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J 2009 J. Phys. D: Appl. Phys. 42 243001Google Scholar

    [15]

    Merrill F E, Bower D, Buckles R, et al. 2012 Rev. Sci. Instrum. 83 051003Google Scholar

    [16]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Methods Phys. Res., Sect. A 424 84Google Scholar

    [17]

    Zhao Q T, Ma Y Y, Xiao J H, Cao S C, Zhang Z M 2019 Appl. Sci. 9 3764Google Scholar

    [18]

    谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王锋, 顾树棣, 过雅南 2003 粒子探测器与数据获取 (北京: 科学出版社) 第5−16页

    Xie Y G, Cheng C, Wang M, Lv J G, Meng X G, Wang F, Gu S D, Guo Y N 2003 Particle Detector and Data Acquisition (Beijing: Science Press) pp5−16 (in Chinese)

    [19]

    Padole A, Khawaja Rd Ali, Kalra M K, Singh S 2015 Am. J. Roentgenol. 204 384Google Scholar

    [20]

    Chen B X, Yang M, Zhang Z, Bian J G, Han X, Sidky E, Pan X C 2014 Biochim. Biophys. Acta 1581 1856Google Scholar

    [21]

    Schofield R, King L, Tayal U, Castellano I, Stirrup J, Pontana F, Earls J, Nicol E 2020 J. Cardiovasc Comput Tomogr. 14 219Google Scholar

    [22]

    Gordon R, Bender R, Herman G T 1970 J. Theor. Biol. 29 471Google Scholar

    [23]

    Trampert J, Leveque J J 1990 J. Geophys. Res. B:Solid Earth 95 12553Google Scholar

    [24]

    Zhu Y L, Yuan P, Cao S C, et al. 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 911 74Google Scholar

    [25]

    Blackledget J M 2006 Digital Signal Processing (2nd Ed.) (Cambridge: Woodhead Press) pp522−540

    [26]

    拉斐尔C, 理查E, 史蒂文L 著 (阮秋琦 译) 2014 数字图像处理(MATLAB版) (第二版) (北京: 电子工业出版社) 第45−48页

    Rafael C, Richard E, Steven L (translated by Ruan Q Q) 2014 Digital Image Processing Using MATLAB (2nd Ed.) (Beijing: Electronics Industry Press) pp45−48 (in Chinese)

    [27]

    Vetterli M, Herley C 1992 IEEE Trans. Acoust., Speech, Signal Process 40 2207Google Scholar

    [28]

    Zhang Y, Zhang W H, Lei Y J, Zhou J L 2014 J. Opt. Soc. Am. A 31 981Google Scholar

    [29]

    Soleimani M., Pengpen T 2015 Philos Trans. R. Dov. London, Ser. A 373 20140399Google Scholar

    [30]

    Sidky E Y, Kao C M, Pan X C 2009 J. X-Ray Sci. Technol. 14 119Google Scholar

    [31]

    Liu Y, Ma J H, Fan Y, Liang Z R 2012 Phys. Med. Biol. 57 7923Google Scholar

    [32]

    Deng L Z, Mi D L, He P, Feng P, Yu P W, Chen M Y, Li Z C, Wang J, Wei B 2015 Bio-med. Mater. Eng. 26 1685Google Scholar

  • [1] 付亚鹏, 孙乾东, 李博艺, 他得安, 许凯亮. 基于RCA阵列三维超快超声血流成像方法仿真研究. 物理学报, 2023, 72(7): 074302. doi: 10.7498/aps.72.20222106
    [2] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法. 物理学报, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [4] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [5] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [6] 潘安, 张晓菲, 王彬, 赵青, 史祎诗. 厚样品三维叠层衍射成像的实验研究. 物理学报, 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [7] 张辉, 杨洋, 李志青. 三维a-IGZO薄膜中的电子-电子散射. 物理学报, 2016, 65(16): 167301. doi: 10.7498/aps.65.167301
    [8] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术. 物理学报, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [9] 陈鹤, 于斌, 陈丹妮, 李恒, 牛憨笨. 超衍射成像中双螺旋点扩展函数的三维定位精度. 物理学报, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [10] 王芳, 赵星, 杨勇, 方志良, 袁小聪. 基于人眼视觉的集成成像三维显示分辨率的比较. 物理学报, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [11] 杨超, 刘大刚, 刘腊群, 夏蒙重, 王辉辉, 王小敏. 负氢离子源中电子能量沉积三维数值模拟研究. 物理学报, 2012, 61(15): 155205. doi: 10.7498/aps.61.155205
    [12] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究. 物理学报, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [13] 刘广东, 张业荣. 乳腺癌检测的三维微波热声成像技术. 物理学报, 2011, 60(7): 074303. doi: 10.7498/aps.60.074303
    [14] 彭凯, 刘大刚, 廖臣, 刘盛纲. 三维电子回旋脉塞的数值模拟研究. 物理学报, 2011, 60(9): 091301. doi: 10.7498/aps.60.091301
    [15] 刘运全, 张 杰, 武慧春, 盛政明. 超短电子脉冲在聚焦强激光场中的三维有质动力散射. 物理学报, 2006, 55(3): 1176-1180. doi: 10.7498/aps.55.1176
    [16] 王少宏, B.Ferguson, 张存林, 张希成. Terahertz波计算机辅助三维层析成像技术. 物理学报, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
    [17] 向际鹰, 吴 震, 曾绍群, 骆清铭, 张 平, 黄德修. 弱相干扫描层析成像系统的三维传递函数分析. 物理学报, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
    [18] 解文方. 三维量子点的三电子系统. 物理学报, 1997, 46(3): 563-567. doi: 10.7498/aps.46.563
    [19] 王晓, 蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, 1993, 42(7): 1149-1156. doi: 10.7498/aps.42.1149
    [20] 张世昌, 王文耀. 电磁波荡器及导引磁场中相对论电子三维运动的线性与非线性分析. 物理学报, 1991, 40(5): 748-755. doi: 10.7498/aps.40.748
计量
  • 文章访问数:  4499
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-05-06
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回