搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CGRaBS J2345-1555多波段流量相关性及射电波段多普勒因子估计

张欢 张皓晶 陆林 马凯旋

引用本文:
Citation:

CGRaBS J2345-1555多波段流量相关性及射电波段多普勒因子估计

张欢, 张皓晶, 陆林, 马凯旋

Multiwavelength corss-correlation and radio Doppler factor estimation of CGRaBS J2345-1555

Zhang Huan, Zhang Hao-Jing, Lu Lin, Ma Kai-Xuan
PDF
HTML
导出引用
  • 收集了Fermi/LAT, Catalina, OVRO发布的CGRaBS J2345-1555长期射电(15 GHz)、伽马、光学V波段的流量和星等数据, 用离散相关函数方法评估了多波段间的相关性, 结果显示伽马波段和射电波段的相关系数为0.53, 时间延迟约为90天, 伽马波段比射电波段超前约90天; 射电和光学V波段的相关系数为0.84, 时间延迟约为–300天, 光学V波段比射电波段超前约300天; 伽马和光学V波段没得出具体相关性. 说明光学波段由同步辐射主导, 射电波段与光学波段的时间延迟可以解释为光学波段的辐射区域在上游, 射电波段在下游. 而伽马波段与射电波段是同源的. 用亮温度方法计算了该天体射电波段的多普勒因子, 多普勒因子平均值为12.25, 并随光变曲线振荡. 分析得出喷流具有明显聚束效应. 射电波段辐射流量变化来自于喷流.
    In this paper, CGRaBS J2345-1555’s long-term radio band, gamma ray flux and optical V-band magnitude data are collected from Fermi/LAT, Catalina, and OVRO dataset. The correlation between multi-bands is evaluated by the discrete correlation function method. The results show that the correlation coefficient between gamma band and radio band is 0.53, and the time delay is about 90 days, a variation of the gamma band is about 90 days ahead of radio band; the correlation coefficient between radio band and optical V-band is 0.84, and the time delay is about –300 days, a variation of the optical V-band is about 300 days ahead of radio band; there is no significant correlation between gamma and optical V-band. These results show that the optical band is dominated by synchrotron radiation, and the time delay between the radio band and the optical band can be explained as the fact that the radiation region of the optical band is upstream, and the radio band is downstream. The gamma band and the radio band are both homologous. The distribution of brightness temperature is used to calculate the Doppler factor of the celestial body’s radio band. The averaged Doppler factor is 12.64, and it oscillates with the light curve. So the jet has obvious bunching effect, and the variation of radiation flux in radio band comes from the jet.
      通信作者: 张皓晶, kmzhanghj@163.com
    • 基金项目: 国家自然科学基金(批准号: 11063004)和云南省中青年学术和技术带头人后备人才(批准号: 2017HB020)资助的课题.
      Corresponding author: Zhang Hao-Jing, kmzhanghj@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11063004) and a Reserve of Young and Middle-age Academic and Technical Leader in Yunnan Province, China (Grant No. 2017HB020)
    [1]

    Blandford R D, Königl A 1979 Astrophys. J. 232 34Google Scholar

    [2]

    Jones T W, O’dell S L, Stein W A 1974 Astrophys. J. 188 353Google Scholar

    [3]

    Böettcher M, Reimer A, Sweeney K, Prakash A 2013 Astrophys. J. 768 54Google Scholar

    [4]

    Dermer C D, Schlickeiser R 2002 Astrophys. J. 575 667Google Scholar

    [5]

    Sikora M, Stawarz L, Moderski R, Nalewajko K, Madejski G M 2009 Astrophys. J. 704 38Google Scholar

    [6]

    Böttcher M, Reimer A, Zhang H C 2013 EPJ Web of Conferences 61 05003Google Scholar

    [7]

    Fuhrmann L, Larsson S, Chiang J, Angelakis E, Zensus J A, Nestoras I, Krichbaum T P, Ungerechts H, Sievers A, Pavlidou V, Readhead A C S, Max M W, Pearson T J 2014 Mon. Not. R. Astron. Soc. 441 1899Google Scholar

    [8]

    Cohen D P, Romani R W, Filippenko A V, Cenko S B, Lott B, Zheng W K, Li W 2014 Astrophys. J. 797 137Google Scholar

    [9]

    Zhang B K, Zhao X Y, Zhang L, Dai B Z 2017 Astrophys. J. 231 14Google Scholar

    [10]

    Ghisellini G, Maraschi L, Tavecchio F 2009 Mon. Not. R. Astron. Soc. 396 L105Google Scholar

    [11]

    Abdo A A, Ackermann M, Ajello M, et al. 2010 Astrophys. J. 715 429Google Scholar

    [12]

    Jiang Y G, Hu S M, Chen X, Shao X, Huo Q H 2020 Mon. Not. R. Astron. Soc. 493 3757Google Scholar

    [13]

    Ghisellini G, Tavecchio F, Foschini F, Bonnoli G, Tagliaferri G 2013 Mon. Not. R. Astron. Soc. 432 L66Google Scholar

    [14]

    Richards J L, Moerbeck W M, Pavlidou V, et al. 2011 Astrophys. J. 194 29Google Scholar

    [15]

    Edelson R A, Krolik J H 1988 Astrophys. J. 333 646Google Scholar

    [16]

    White R J, Peterson B M 1994 Pub. Astron. Soc. Pac. 106 879

    [17]

    Kellermann K I, Pauliny T I I K 1969 Astrophys. J. 155L 71K

    [18]

    Lähteenmäki A, Valtaoja E, Wiik K 1999 Astrophys. J. 511 112Google Scholar

    [19]

    Readhead A C S 1994 Astrophys. J. 426 51Google Scholar

    [20]

    Wagner S J, Witzel A 1995 Ann. Rev. Astron. Astrophys. J. 33 163Google Scholar

    [21]

    Shaw M S, Romani R W, Cotter G, Healey S E, Michelson P F, Readhead A C S, Richards J L, Max M W, King O G, Potter W J 2012 Astrophys. J. 748 49Google Scholar

    [22]

    Max M W, Hovatta T, Richards J L, King O G, Pearson T J, Readhead A C S, Reeves R, Shepherd M C, Stevenson M A, Angelakis E, Fuhrmann L, Grainge K J B, Pavlidou V, Romani R W, Zensus J A 2014 Mon. Not. R. Astron. Soc. 445 428Google Scholar

    [23]

    Liodakis I, Pavlidou V 2015 Mon. Not. R. Astron. Soc. 454 1767Google Scholar

    [24]

    Caproni A, Abraham Z, Monteiro H 2012 Mon. Not. R. Astron. Soc. 428 280Google Scholar

    [25]

    Stirling A M, Cawthorne T V, Stevens J A, Jorstad S G, Marscher A P, Lister M L, Gomez J L, Smith P S, Agudo I, Gabuzda D C, Robson E I, Gear W K 2010 Mon. Not. R. Astron. Soc. 341 405

    [26]

    Caproni A, Abraham Z, Motter J C, Monteiro H 2017 Astrophys. J. 851 L39Google Scholar

  • 图 1  从2008年1月5日至2020年7月1日射电波段15 GHz流量数据, 红色矩形内为大爆发, 绿色矩形内为小爆发

    Fig. 1.  15 GHz radio frequency data from January 5, 2008 to July 1, 2020. Strong bursts are inside the red rectangles, weak bursts are inside the green rectangles.

    图 2  从2008年8月19日至2019年4月24日伽马波段流量数据, 红色矩形内为爆发

    Fig. 2.  Gamma band data from August 19, 2008 to April 24, 2019. Bursts are inside the red rectangles.

    图 3  从2005年11月30日至2010年8月13日光学V波段流量数据

    Fig. 3.  Optical V-band data from November 30, 2005 to August 13, 2010. Bursts are inside the red rectangles.

    图 4  红色曲线为99.7%置信曲线, 黑色点为伽马和射电15 GHz波段离散相关函数的计算结果

    Fig. 4.  Red curve is the 99.7% confidence curve, and the black points are the calculation results of the discrete correlation function of the gamma band and the radio 15 GHz band.

    图 5  红色曲线为99.9%置信曲线, 黑色点为射电波段和光学V波段离散相关函数计算结果

    Fig. 5.  Red curve is the 99.9% confidence curve, and the black points are the calculation results of the discrete correlation function of the radio band and the optical V band.

    图 6  伽马波段和光学V波段离散相关函数计算结果

    Fig. 6.  Calculation results of the discrete correlation function of the gamma band and the optical V band.

    图 7  15 GHz多普勒因子的分布

    Fig. 7.  15 GHz Doppler factor distribution.

    表 1  射电波段11个爆发的多普勒因子

    Table 1.  Doppler factor of 11 bursts in radio band.

    流量范围(JD = 2400000+)$\Delta F/{\rm Jy}$${t_{ {\text{ob} } } }/{\rm days}$$ \delta $
    154655.5—54947.00.2760138.306.31
    255025.5—55340.70.273664.5710.46
    355637.8—55918.10.523252.9614.82
    455994.9—56441.60.5645195.386.36
    556455.6—56588.20.588676.5012.06
    656588.2—56832.60.219250.2111.49
    756832.6—57041.00.689954.5415.93
    857041.0—57228.40.518560.6513.97
    957258.4—57638.30.8702214.226.9
    1057951.5—58488.10.894461.3716.06
    1158509.9—58645.60.312625.2520.44
    下载: 导出CSV
  • [1]

    Blandford R D, Königl A 1979 Astrophys. J. 232 34Google Scholar

    [2]

    Jones T W, O’dell S L, Stein W A 1974 Astrophys. J. 188 353Google Scholar

    [3]

    Böettcher M, Reimer A, Sweeney K, Prakash A 2013 Astrophys. J. 768 54Google Scholar

    [4]

    Dermer C D, Schlickeiser R 2002 Astrophys. J. 575 667Google Scholar

    [5]

    Sikora M, Stawarz L, Moderski R, Nalewajko K, Madejski G M 2009 Astrophys. J. 704 38Google Scholar

    [6]

    Böttcher M, Reimer A, Zhang H C 2013 EPJ Web of Conferences 61 05003Google Scholar

    [7]

    Fuhrmann L, Larsson S, Chiang J, Angelakis E, Zensus J A, Nestoras I, Krichbaum T P, Ungerechts H, Sievers A, Pavlidou V, Readhead A C S, Max M W, Pearson T J 2014 Mon. Not. R. Astron. Soc. 441 1899Google Scholar

    [8]

    Cohen D P, Romani R W, Filippenko A V, Cenko S B, Lott B, Zheng W K, Li W 2014 Astrophys. J. 797 137Google Scholar

    [9]

    Zhang B K, Zhao X Y, Zhang L, Dai B Z 2017 Astrophys. J. 231 14Google Scholar

    [10]

    Ghisellini G, Maraschi L, Tavecchio F 2009 Mon. Not. R. Astron. Soc. 396 L105Google Scholar

    [11]

    Abdo A A, Ackermann M, Ajello M, et al. 2010 Astrophys. J. 715 429Google Scholar

    [12]

    Jiang Y G, Hu S M, Chen X, Shao X, Huo Q H 2020 Mon. Not. R. Astron. Soc. 493 3757Google Scholar

    [13]

    Ghisellini G, Tavecchio F, Foschini F, Bonnoli G, Tagliaferri G 2013 Mon. Not. R. Astron. Soc. 432 L66Google Scholar

    [14]

    Richards J L, Moerbeck W M, Pavlidou V, et al. 2011 Astrophys. J. 194 29Google Scholar

    [15]

    Edelson R A, Krolik J H 1988 Astrophys. J. 333 646Google Scholar

    [16]

    White R J, Peterson B M 1994 Pub. Astron. Soc. Pac. 106 879

    [17]

    Kellermann K I, Pauliny T I I K 1969 Astrophys. J. 155L 71K

    [18]

    Lähteenmäki A, Valtaoja E, Wiik K 1999 Astrophys. J. 511 112Google Scholar

    [19]

    Readhead A C S 1994 Astrophys. J. 426 51Google Scholar

    [20]

    Wagner S J, Witzel A 1995 Ann. Rev. Astron. Astrophys. J. 33 163Google Scholar

    [21]

    Shaw M S, Romani R W, Cotter G, Healey S E, Michelson P F, Readhead A C S, Richards J L, Max M W, King O G, Potter W J 2012 Astrophys. J. 748 49Google Scholar

    [22]

    Max M W, Hovatta T, Richards J L, King O G, Pearson T J, Readhead A C S, Reeves R, Shepherd M C, Stevenson M A, Angelakis E, Fuhrmann L, Grainge K J B, Pavlidou V, Romani R W, Zensus J A 2014 Mon. Not. R. Astron. Soc. 445 428Google Scholar

    [23]

    Liodakis I, Pavlidou V 2015 Mon. Not. R. Astron. Soc. 454 1767Google Scholar

    [24]

    Caproni A, Abraham Z, Monteiro H 2012 Mon. Not. R. Astron. Soc. 428 280Google Scholar

    [25]

    Stirling A M, Cawthorne T V, Stevens J A, Jorstad S G, Marscher A P, Lister M L, Gomez J L, Smith P S, Agudo I, Gabuzda D C, Robson E I, Gear W K 2010 Mon. Not. R. Astron. Soc. 341 405

    [26]

    Caproni A, Abraham Z, Motter J C, Monteiro H 2017 Astrophys. J. 851 L39Google Scholar

  • [1] 干红平, 张涛, 花燚, 舒君, 何立军. 基于双极性混沌序列的托普利兹块状感知矩阵. 物理学报, 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [2] 赵新军, 李九智, 蒋中英. 时间延迟对细胞周期动力学的影响. 物理学报, 2021, 70(20): 208701. doi: 10.7498/aps.70.20210323
    [3] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [4] 王萍, 牛智勇. 基于多普勒天气雷达数据的中层径向辐合自动识别及其与强对流天气的相关性研究. 物理学报, 2014, 63(1): 019201. doi: 10.7498/aps.63.019201
    [5] 邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰. 掺铒光纤中亚稳态粒子振荡和慢光时间延迟关系研究. 物理学报, 2013, 62(21): 214205. doi: 10.7498/aps.62.214205
    [6] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [7] 海凛, 张业荣. 任意分集方式多输入多输出无线通信系统的统计信道建模. 物理学报, 2012, 61(18): 180101. doi: 10.7498/aps.61.180101
    [8] 王参军. 随机基因选择模型中的延迟效应. 物理学报, 2012, 61(5): 050501. doi: 10.7498/aps.61.050501
    [9] 高湘昀, 安海忠, 方伟. 基于复杂网络的时间序列双变量相关性波动研究. 物理学报, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [10] 李琴, 郭红. 宽频脉冲光的传播特性. 物理学报, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [11] 杨林静. Logistic系统跃迁率的时间延迟效应. 物理学报, 2011, 60(5): 050502. doi: 10.7498/aps.60.050502
    [12] 王启光, 侯威, 郑志海, 冯爱霞, 邓北胜. 极端事件再现时间长程相关性与群发性研究. 物理学报, 2010, 59(10): 7491-7497. doi: 10.7498/aps.59.7491
    [13] 林灵, 闫勇, 梅冬成. 时间延迟增强双稳系统的共振抑制. 物理学报, 2010, 59(4): 2240-2243. doi: 10.7498/aps.59.2240
    [14] 封国林, 龚志强, 侯威, 王启光, 支蓉. 气象领域极端事件的长程相关性. 物理学报, 2009, 58(4): 2853-2861. doi: 10.7498/aps.58.2853
    [15] 王启光, 支 蓉, 张增平. Lorenz系统长程相关性研究. 物理学报, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [16] 邱 巍, 掌蕴东, 叶建波, 田 赫, 王 楠, 王 号, 王金芳, 袁 萍. 损耗可控条件下掺铒光纤中光速减慢现象的研究. 物理学报, 2008, 57(4): 2242-2247. doi: 10.7498/aps.57.2242
    [17] 郭永峰, 徐 伟. 关联白噪声驱动的具有时间延迟的Logistic系统. 物理学报, 2008, 57(10): 6081-6085. doi: 10.7498/aps.57.6081
    [18] 张佃中. 非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究. 物理学报, 2007, 56(6): 3152-3157. doi: 10.7498/aps.56.3152
    [19] 刘宏鲲, 周 涛. 中国城市航空网络的实证研究与分析. 物理学报, 2007, 56(1): 106-112. doi: 10.7498/aps.56.106
    [20] 程 勇, 张 雄, 伍 林, 毛慰明, 尤莉莎. 用离散相关函数方法分析Blazar天体的γ射线和射电辐射的相关性. 物理学报, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
计量
  • 文章访问数:  3447
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 修回日期:  2021-06-09
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回