搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“相位驻波”法测量液体的表面张力系数

沙金巧 虞一青 杨俊义 范君柳

引用本文:
Citation:

“相位驻波”法测量液体的表面张力系数

沙金巧, 虞一青, 杨俊义, 范君柳

Measuring surface tension coefficient of liquid by “phase standing wave” method

Sha Jin-Qiao, Yu Yi-Qing, Yang Jun-Yi, Fan Jun-Liu
PDF
HTML
导出引用
  • 液体表面张力系数测量技术中, 非接触法测量具有快速、无损和简单实用等优点. 本文设计了一种非接触式测量透明液体表面张力系数的新方法, 发现了一种特殊的“自干涉”现象, 并提出“相位驻波”理论解释了该现象产生的原因. 通过一个频率可调的振动源激发液体表面波, 利用普通光源或激光光源斜入射至液面, 经过液面下方的漫反射面反射后, 光波携带第一次表面波相位信息与表面波再次相遇, 使两次相位余弦波产生了驻波形式的相位分布, 从而在远场观察到明暗相间且非常稳定的“自干涉”条纹. 通过对图像分析处理, 实现条纹间距的自动测量, 根据表面波的色散关系, 自动准确地获得液体的表面张力系数, 该方法可广泛应用于液体表面张力系数的精确测量.
    The surface tension of liquid is an important parameter to characterize the properties of liquid. The non-contact method of measuring the surface tension coefficient of liquid has the advantages of being fast, non-destructive, simple and practical. A new non-contact method of measuring the surface tension coefficient of transparent liquid based on the theory of light propagation is developed, and a special phenomenon of “self-interference” is discovered. The “Phase Standing Wave” theory is proposed to explain the phenomenon.The surface wave of the liquid is excited by a frequency-adjustable vibration source (oscillator), and it propagates dynamically in the form of oscillator and cosine wave. When the white light source or laser is incident on the liquid surface obliquely, the phase distribution (cosine-like wave) generated by the light wave carrying the surface wave is first incident on the white paper which is located at the bottom of liquid, and the oscillator will also form the oscillator shadow on the white paper. The phase distribution of the light wave on the white paper spreads around dynamically in the form of cosine wave centering on the oscillator shadow. After diffuse reflection from the white paper, part of the diffuse reflection light in the observation direction carries the dynamic phase generated by the surface wave the first time back to the liquid surface and meets the surface wave again. After the light wave passes through the surface, it carries the phase generated by the surface wave the second time, that is, the superposition of two surface waves occurs in the phase of the light wave. In the phase of the light wave, the phase wave of the oscillator will propagate in the direction of the oscillator shadow, and the phase wave of the oscillator shadow will propagate in the direction of the oscillator.According to the conditions of forming standing waves, two surface waves propagating in the opposite directions can form standing waves, so the phase standing waves can exist only within a relatively small range between the oscillator and the oscillator shadow. Thus the dark and bright “self-interference” with stable stripes can be observed in the far field. When white light and laser are used as light sources respectively, the fringe spacing remains unchanged, indicating that the fringe spacing is independent of the wavelength of incident light, and the light wave is only the carrier of the mechanical wave phase. The light waves with different wavelengths and coherences have no influence on the experimental measurement results.The fringe spacing is measured automatically by analyzing and processing the image captured by camera. According to the dispersion relationship of surface waves, the surface tension coefficient of water is obtained automatically and accurately. The experimental setup is simple and easy to operate, the experimental phenomenon is intuitive, the stripes are clear and stable, and the anti-interference capability is strong, and can be observed in all directions. It can be widely used to measure the surface tension coefficients of other transparent liquids.
      通信作者: 沙金巧, 471736918@qq.com
    • 基金项目: “十四五”江苏省重点学科建设经费(批准号: 2021135)资助的课题.
      Corresponding author: Sha Jin-Qiao, 471736918@qq.com
    • Funds: Project supported by “Fourteenth Five-Year Plan” Key Disciplines Construction Funds of Jiangsu Province, China (Grant No. 2021135).
    [1]

    Javadi A, Habibi M, Taheri F S, Moulinet S, Bonn D 2013 Sci. Rep. 3 1412Google Scholar

    [2]

    Lee J H, Kim C J 2000 J. Microelectromech. Syst. 9 171Google Scholar

    [3]

    Ragesh P, Ganesh V A, Nair S V, Nair A S 2014 J. Mater. Chem. A 2 14773Google Scholar

    [4]

    López C, Hirsa A 2008 Nat. Photon. 2 610Google Scholar

    [5]

    Nazmul H, Hanseup K, and Carlos H M 2016 Opt. Express 24 13334Google Scholar

    [6]

    Na X 2021 Chin. Phys. B 30 104702Google Scholar

    [7]

    Michela P, Vladimir V R, Marcella I 2022 J. Phys. Condens. Matter 34 044003Google Scholar

    [8]

    Polovnikov K E, Gumerov R A, Potemkin I I 2016 Macromolecules 49 6599Google Scholar

    [9]

    Kou H B, Li W G, Zhang X Y, Xu N D, Zhang X H, Shao J X, Ma J Z, Deng Y, Li Y 2019 Fluid Phase Equilib. 484 53Google Scholar

    [10]

    Dogan A, Arslan H 2018 Philos. Mag. 98 2529Google Scholar

    [11]

    Mengsu P, Timothy T D, Cuong V N, Anh V N 2021 Langmuir 37 2237Google Scholar

    [12]

    张福建, 陈悦, 高翔, 刘珍, 张忠强 2021 物理学报 70 200202Google Scholar

    Zhang F J, Chen Y, Gao X, Liu Z, Zhang Z Q 2021 Acta Phys. Sin. 70 200202Google Scholar

    [13]

    Tang L, Liu G N, Qian J et al. 2016 Eur. J. Phys. 37 025801Google Scholar

    [14]

    Saepuzaman D, Nugraha M G, Dewi R et al. 2018 Pertanika J. Sci. Technol. 26 1435

    [15]

    Samad A, Siamak M, Mohsen M, Mohammad T A, Farhad S 2008 J. Chem. Chem. Eng. 27 7

    [16]

    Christov N C, Danov K D, Kralchevsky P A, et al. 2006 Langmuir 22 7528Google Scholar

    [17]

    Zhu F, Miao R C, Xu C L, Cao Z Z 2007 Am. J. Phys. 75 896Google Scholar

    [18]

    Luo D B, Qian L L, Dong L W, Shao P, Yue Z M, Wang J, Shi B, Wu S B, Qin Y P 2019 Opt. Express 27 16703Google Scholar

    [19]

    Nikolic D, Nesic L 2012 Eur. J. Phys. 33 1677Google Scholar

    [20]

    Lighthil J 1978 Waves in Fluids (Cambridge: Cambridge University Press)

    [21]

    Behroozi F, Perkins A 2006 Am. J. Phys. 74 957Google Scholar

    [22]

    Crawford F S 1987 Am. J. Phys. 55 171Google Scholar

  • 图 1  测量装置示意图

    Fig. 1.  Schematic diagram of measuring device.

    图 2  光照射下水面波形成的明暗相间条纹

    Fig. 2.  Light and dark streaks formed by water surface wave under light irradiation.

    图 3  (a) “相位驻波”法测量液体的表面张力系数的实验原理示意图; (b) 实验原理的等效示意图

    Fig. 3.  (a) Schematic diagram of measuring the surface tension coefficient of liquid by “phase standing wave” method; (b) an equivalent schematic of the experimental principle

    图 4  相位波分布及摄像头处的光强数值模拟图

    Fig. 4.  Phase wave distribution and numerical simulation of light intensity at the camera.

    图 5  不同频率下的“自干涉”条纹

    Fig. 5.  “Self-interference” fringes at different frequencies.

    图 6  (a) 激光照射下液体表面波形成的条纹图像; (b) 激光和白光照射下液体表面波形成的条纹对比图

    Fig. 6.  (a) Fringes formed by liquid surface wave under laser irradiation; (b) contrast of the fringes formed by liquid surface waves illuminated by laser and white light.

    表 1  不同频率下自来水表面张力系数的测量结果

    Table 1.  Measurement results of surface tension coefficient of water at different frequencies.

    序号频率
    f/Hz
    亮纹间距
    d/mm
    表面张力系数
    ${ {\sigma } }_{ {i} }$/(10–3 N·m–1)
    1602.47969.8
    2802.05270.4
    31001.75668.9
    41201.57471.5
    51401.40469.1
    61601.29671.0
    71801.18869.2
    下载: 导出CSV

    表 2  频率为100 Hz时, 自来水和含洗手液水溶液的表面张力系数测量结果

    Table 2.  Measurement results of surface tension coefficient of water and aqueous solution containing hand sanitizer at the frequency of 100 Hz.


    自来水水溶液(含洗手液)
    亮纹间距
    d/mm
    表面张力系数
    $\sigma_i$/(10–3 N·m–1)
    亮纹间距
    d/mm
    表面张力系数
    $\sigma_i$/(10–3 N·m–1)
    11.75668.91.51244.0
    21.76369.81.50643.5
    31.76469.91.48741.9
    41.74868.01.48741.9
    51.74267.31.49442.5
    61.75468.71.49042.1
    下载: 导出CSV
  • [1]

    Javadi A, Habibi M, Taheri F S, Moulinet S, Bonn D 2013 Sci. Rep. 3 1412Google Scholar

    [2]

    Lee J H, Kim C J 2000 J. Microelectromech. Syst. 9 171Google Scholar

    [3]

    Ragesh P, Ganesh V A, Nair S V, Nair A S 2014 J. Mater. Chem. A 2 14773Google Scholar

    [4]

    López C, Hirsa A 2008 Nat. Photon. 2 610Google Scholar

    [5]

    Nazmul H, Hanseup K, and Carlos H M 2016 Opt. Express 24 13334Google Scholar

    [6]

    Na X 2021 Chin. Phys. B 30 104702Google Scholar

    [7]

    Michela P, Vladimir V R, Marcella I 2022 J. Phys. Condens. Matter 34 044003Google Scholar

    [8]

    Polovnikov K E, Gumerov R A, Potemkin I I 2016 Macromolecules 49 6599Google Scholar

    [9]

    Kou H B, Li W G, Zhang X Y, Xu N D, Zhang X H, Shao J X, Ma J Z, Deng Y, Li Y 2019 Fluid Phase Equilib. 484 53Google Scholar

    [10]

    Dogan A, Arslan H 2018 Philos. Mag. 98 2529Google Scholar

    [11]

    Mengsu P, Timothy T D, Cuong V N, Anh V N 2021 Langmuir 37 2237Google Scholar

    [12]

    张福建, 陈悦, 高翔, 刘珍, 张忠强 2021 物理学报 70 200202Google Scholar

    Zhang F J, Chen Y, Gao X, Liu Z, Zhang Z Q 2021 Acta Phys. Sin. 70 200202Google Scholar

    [13]

    Tang L, Liu G N, Qian J et al. 2016 Eur. J. Phys. 37 025801Google Scholar

    [14]

    Saepuzaman D, Nugraha M G, Dewi R et al. 2018 Pertanika J. Sci. Technol. 26 1435

    [15]

    Samad A, Siamak M, Mohsen M, Mohammad T A, Farhad S 2008 J. Chem. Chem. Eng. 27 7

    [16]

    Christov N C, Danov K D, Kralchevsky P A, et al. 2006 Langmuir 22 7528Google Scholar

    [17]

    Zhu F, Miao R C, Xu C L, Cao Z Z 2007 Am. J. Phys. 75 896Google Scholar

    [18]

    Luo D B, Qian L L, Dong L W, Shao P, Yue Z M, Wang J, Shi B, Wu S B, Qin Y P 2019 Opt. Express 27 16703Google Scholar

    [19]

    Nikolic D, Nesic L 2012 Eur. J. Phys. 33 1677Google Scholar

    [20]

    Lighthil J 1978 Waves in Fluids (Cambridge: Cambridge University Press)

    [21]

    Behroozi F, Perkins A 2006 Am. J. Phys. 74 957Google Scholar

    [22]

    Crawford F S 1987 Am. J. Phys. 55 171Google Scholar

  • [1] 黄虎, 田泽冰. 海洋深水表面张力波-重力波的单波列第n阶自共振定律. 物理学报, 2023, 72(5): 054701. doi: 10.7498/aps.72.20221281
    [2] 周淑英, 沈婉萍, 毛鸿. 强子夸克相变表面张力解析求解. 物理学报, 2022, 71(21): 211101. doi: 10.7498/aps.71.20220659
    [3] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [4] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究. 物理学报, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [5] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力. 物理学报, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [6] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [7] 蒋晗, 陈明文, 史国栋, 王涛, 王自东. 各向异性表面张力对深胞晶界面形态稳定性的影响. 物理学报, 2016, 65(9): 096803. doi: 10.7498/aps.65.096803
    [8] 张玉燕, 周航, 闫美素. 基于经验模态分解的自混合干涉相位提取方法研究. 物理学报, 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [9] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响. 物理学报, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [10] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [11] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [12] 李方家, 刘军, 李儒新. 基于自衍射效应的自参考光谱干涉方法的研究. 物理学报, 2013, 62(6): 064211. doi: 10.7498/aps.62.064211
    [13] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [14] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位. 物理学报, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [15] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [16] 曹晓平, 蒋亦民. 浸润接触线的摩擦性质与固体表面张力的Wenzel行为. 物理学报, 2005, 54(5): 2202-2206. doi: 10.7498/aps.54.2202
    [17] 邓玉强, 吴祖斌, 陈盛华, 柴 路, 王清月, 张志刚. 自参考光谱相干法的小波变换相位重建. 物理学报, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [18] 许心光, 杜晨林, 邵宗书, 牟晓东, 胡居广, 徐海清, 罗豪苏, 仲维卓. BaTiO3晶体自抽运相位共轭特性研究. 物理学报, 2000, 49(11): 2165-2170. doi: 10.7498/aps.49.2165
    [19] 王中结, 路轶群, 陆同兴. 冷却原子在相位调制加速驻波光场作用下动量扩散的动力学. 物理学报, 2000, 49(4): 670-673. doi: 10.7498/aps.49.670
    [20] 黄国翔, 颜家壬, 戴显熹. 矩形谐振器中非传播重力-表面张力孤波的理论研究. 物理学报, 1990, 39(8): 52-60. doi: 10.7498/aps.39.52
计量
  • 文章访问数:  5223
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-08-16
  • 上网日期:  2022-11-06
  • 刊出日期:  2022-11-20

/

返回文章
返回