搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强子夸克相变表面张力解析求解

周淑英 沈婉萍 毛鸿

引用本文:
Citation:

强子夸克相变表面张力解析求解

周淑英, 沈婉萍, 毛鸿

Analytical solution of surface tension of quark-hadron phase transition

Zhou Shu-Ying, Shen Wan-Ping, Mao Hong
PDF
HTML
导出引用
  • 最近一级相变动力学的研究在早期宇宙、致密星体和相对论重离子对撞实验等方面得到了广泛的关注, 特别是与一级相变相关的引力波方面的研究, 是当前宇宙学研究的热点问题. 本文利用有限温度场论, 在有限温度和密度下, 研究了Friedberg-Lee模型下的单圈有效势能和量子色动力学退禁闭相变的动力学机制, 结果表明在全相图中存在一级相变, 在μ = 0 MeV时, 临界温度$ {T_{\text{c}}} $ = 119.8 MeV; 在T = 50 MeV时, 临界化学势$ {\mu _{\text{c}}} $= 256.4 MeV. 在薄壁近似下, 通过液滴核合成唯象模型研究了均质气泡成核的强子夸克一级相变的动力学过程, 在适当的边界条件下, 求解场的运动方程, 计算不同温度和密度下气泡临界位形随半径的演化, 获得了表面张力、临界半径和核合成自由能等物理量随温度与夸克化学势密度的变化关系. 为了证明薄壁近似的可靠性和优势, 本文将薄壁近似的分析结果与相应的精确解进行了对比, 讨论了薄壁近似的适用条件, 以及薄壁近似的优缺点等问题. 虽然本文的计算结果是模型相关的, 但是一般性的研发方法和结论具有普适性, 所获得的结果对其他领域一级相变动力学研究有较大的参考价值和现实意义.
    By using the finite temperature field theory, the one-loop effective potential and the dynamics of the quantum chromodynamics deconfinement phase transition in the framework of Friedberg-Lee model are studied at finite temperature and density. Our results show that there is a first-order deconfinement phase transition for the full phase diagram, and the critical temperature is about 119.8 MeV for a zero chemical potential whereas the critical chemical is around 256.4 MeV when the temperature is fixed at T = 50 MeV. Moreover, in the thin-wall approximation, we investigate the dynamics of a strong first-order quark-hadron transition via homogeneous bubble nucleation in the Friedberg-Lee model. Under an appropriate boundary condition, the equation of motion for the $ \sigma $ field is solved, then the evolutions of the bubble critical configuration with radius $ r $ at different temperatures and densities are calculated. The surface tension, the typical radius of the critical bubble and the shift in the coarse-grained free energy each as a function of temperature and chemical potential are obtained. In order to gain the reliability and advantages of the thin-wall approximation, our analytical results based on the thin-wall approximation are compared with those obtained by the exact numerical method accordingly. Finally, some consequences and possible applications of our results in the quark meson model and Polyakov quark meson model are also presented in the end of this paper.
      通信作者: 毛鸿, mao@hznu.edu.cn
      Corresponding author: Mao Hong, mao@hznu.edu.cn
    [1]

    Fukushima K, Hatsuda T 2011 Rep. Prog. Phys. 74 014001Google Scholar

    [2]

    Gell-Mann M, Levy M 1960 Nuovo. Cimento. 16 705Google Scholar

    [3]

    Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 122 345Google Scholar

    [4]

    Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 124 246Google Scholar

    [5]

    Schaefer B J, Pawlowski J M, Wambach J 2007 Phys. Rev. D 76 074023Google Scholar

    [6]

    Costa P, Ruivo M C, Sousa C D, Hansen H 2010 Symmetry 2 1338Google Scholar

    [7]

    Coleman S 1977 Phys. Rev. D 15 2929

    [8]

    Callan C G, Coleman J, Coleman S 1977 Phys. Rev. D 16 1762Google Scholar

    [9]

    Coleman S 1988 Aspects of Symmetry (Cambridge: Cambridge University Press)

    [10]

    Linde A D 1981 Phys. Lett. B 100B 37

    [11]

    Linde A D 1983 Nucl. Phys. B 216 421Google Scholar

    [12]

    Kohsuke Y, Tetsuo H, Yasuo M 2005 Quark-Gluon Plasma (Cambridge: Cambridge University Press)

    [13]

    Friedberg R, Lee T D 1977 Phys. Rev. D 15 1694Google Scholar

    [14]

    Friedberg R, Lee T D 1977 Phys. Rev. D 16 1096Google Scholar

    [15]

    Friedberg R, Lee T D 1978 Phys. Rev. D 18 2623Google Scholar

    [16]

    Daniel C, Mark H, Weir D J 2018 Phys. Rev. D 97 123513Google Scholar

    [17]

    Cutting D, Escartin E G, Hindmarsh M, Weir D J 2021 Phys. Rev. D 103 023531

    [18]

    Wang X, Huang F P, Zhang X 2020 JCAP 2005 045

    [19]

    Bessa A, Fraga E S, Mintz B W 2008 Phys. Rev. D 79 034012

    [20]

    Zhou S, Shu S, Mao H 2021 Chin. Phys. C 45 043104Google Scholar

    [21]

    Goldflam R, Wilets L 1982 Phys. Rev. D 25 1951Google Scholar

    [22]

    Reinhardt H, Dang B V, Schulz H 1985 Phys. Lett. B 159 161Google Scholar

    [23]

    Li M, Birse M C, Wilets L 1987 J. Phys. G 13 1Google Scholar

    [24]

    Gao S, Wang E, Jiarong L I 1992 Phys. Rev. D 46 3211Google Scholar

    [25]

    Mao H, Yao M, Zhao W Q 2008 Phys. Rev. C 77 065205

    [26]

    Shu S, Li J R 2010 Phys. Rev. C 82 045203

    [27]

    Birse M C 1992 Progr. Part. Nucl. Phys. 25 1

    [28]

    Laine M, Vuorinen A 2016 Basics of Thermal Field Theory (New York: Springer International Publishing)

    [29]

    Kapusta J I, Gale C 2006 Finite-Temperature Field Theory: Principles and Applications (Cambridge: Cambridge University Press)

    [30]

    Coleman S 1988 Aspects of Symmetry (Cambridge: Cambridge University Press)

    [31]

    Weinberg E J 2012 Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics (Cambridge: Cambridge Monographs on Mathematical Physics)

    [32]

    Linde A D 1983 Nucl. Phys. B 216 421 Erratum: [1983 Nucl. Phys. B 223 544]

  • 图 1  FL模型下的QCD相图结构

    Fig. 1.  QCD phase diagram structure under FL model.

    图 2  (a) $ \mu = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $, $ T = 0, 70, 100, 105, 109{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $时气泡临界位形; (b) $ T = 50{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $, $\mu = 0, 150, 200, 230, 240{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}}$时气泡临界位形

    Fig. 2.  (a) Bubble critical configuration at $ \mu = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $, $ T = 0, 70, 100, 105, 109{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $; (b) bubble critical configuration at $ T = 50{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $, $ \mu = 0, 150, 200, 230, 240{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $.

    图 3  $ T = {T_{\text{c}}} $时表面张力随化学势$ \mu $的变化关系

    Fig. 3.  Surface tension as a function of chemical potential $ \mu $ when $ T = {T_{\text{c}}} $.

    图 4  (a) $ \mu = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $时表面张力与温度$ T $的关系; (b) T =$ 50{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}}$时表面张力与化学势$ \mu $的关系

    Fig. 4.  (a) Surface tension as a function of temperature $ T $ when $ \mu = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $; (b) surface tension as a function of chemical potential $ \mu $ when $ T = 50{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $.

    图 5  (a) $ \mu = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $时临界半径与温度$ T $的关系; (b) $ T = 50{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $时临界半径与化学势$ \mu $的关系

    Fig. 5.  (a) Typical radius of the critical bubble as a function of temperature $ T $ when $ \mu = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $; (b) typical radius of the critical bubble as a function of chemical potential $ \mu $ when $ T = 50{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $.

    图 6  (a) $ \mu = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $$ {F_{\text{b}}}/T $与温度$ T $的关系; (b) $ T = 50{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $$ {F_{\text{b}}}/T $与化学势$ \mu $的关系

    Fig. 6.  (a) $ {F_{\text{b}}}/T $ as a function of temperature $ T $ when $ \mu = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $; (b) $ {F_{\text{b}}}/T $ as a function of chemical potential $ \mu $ when $ T = 50{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{MeV}} $.

  • [1]

    Fukushima K, Hatsuda T 2011 Rep. Prog. Phys. 74 014001Google Scholar

    [2]

    Gell-Mann M, Levy M 1960 Nuovo. Cimento. 16 705Google Scholar

    [3]

    Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 122 345Google Scholar

    [4]

    Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 124 246Google Scholar

    [5]

    Schaefer B J, Pawlowski J M, Wambach J 2007 Phys. Rev. D 76 074023Google Scholar

    [6]

    Costa P, Ruivo M C, Sousa C D, Hansen H 2010 Symmetry 2 1338Google Scholar

    [7]

    Coleman S 1977 Phys. Rev. D 15 2929

    [8]

    Callan C G, Coleman J, Coleman S 1977 Phys. Rev. D 16 1762Google Scholar

    [9]

    Coleman S 1988 Aspects of Symmetry (Cambridge: Cambridge University Press)

    [10]

    Linde A D 1981 Phys. Lett. B 100B 37

    [11]

    Linde A D 1983 Nucl. Phys. B 216 421Google Scholar

    [12]

    Kohsuke Y, Tetsuo H, Yasuo M 2005 Quark-Gluon Plasma (Cambridge: Cambridge University Press)

    [13]

    Friedberg R, Lee T D 1977 Phys. Rev. D 15 1694Google Scholar

    [14]

    Friedberg R, Lee T D 1977 Phys. Rev. D 16 1096Google Scholar

    [15]

    Friedberg R, Lee T D 1978 Phys. Rev. D 18 2623Google Scholar

    [16]

    Daniel C, Mark H, Weir D J 2018 Phys. Rev. D 97 123513Google Scholar

    [17]

    Cutting D, Escartin E G, Hindmarsh M, Weir D J 2021 Phys. Rev. D 103 023531

    [18]

    Wang X, Huang F P, Zhang X 2020 JCAP 2005 045

    [19]

    Bessa A, Fraga E S, Mintz B W 2008 Phys. Rev. D 79 034012

    [20]

    Zhou S, Shu S, Mao H 2021 Chin. Phys. C 45 043104Google Scholar

    [21]

    Goldflam R, Wilets L 1982 Phys. Rev. D 25 1951Google Scholar

    [22]

    Reinhardt H, Dang B V, Schulz H 1985 Phys. Lett. B 159 161Google Scholar

    [23]

    Li M, Birse M C, Wilets L 1987 J. Phys. G 13 1Google Scholar

    [24]

    Gao S, Wang E, Jiarong L I 1992 Phys. Rev. D 46 3211Google Scholar

    [25]

    Mao H, Yao M, Zhao W Q 2008 Phys. Rev. C 77 065205

    [26]

    Shu S, Li J R 2010 Phys. Rev. C 82 045203

    [27]

    Birse M C 1992 Progr. Part. Nucl. Phys. 25 1

    [28]

    Laine M, Vuorinen A 2016 Basics of Thermal Field Theory (New York: Springer International Publishing)

    [29]

    Kapusta J I, Gale C 2006 Finite-Temperature Field Theory: Principles and Applications (Cambridge: Cambridge University Press)

    [30]

    Coleman S 1988 Aspects of Symmetry (Cambridge: Cambridge University Press)

    [31]

    Weinberg E J 2012 Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics (Cambridge: Cambridge Monographs on Mathematical Physics)

    [32]

    Linde A D 1983 Nucl. Phys. B 216 421 Erratum: [1983 Nucl. Phys. B 223 544]

  • [1] 袁晓娟. 链接杂质对一维量子Ising模型动力学性质的调控. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241390
    [2] 洪浩艺, 高美琪, 桂龙成, 华俊, 梁剑, 史君, 邹锦涛. 格点量子色动力学数据的虚部分布与信号改进. 物理学报, 2023, 72(20): 201101. doi: 10.7498/aps.72.20230869
    [3] 袁晓娟. 三模型随机场对一维量子Ising模型动力学性质的调控. 物理学报, 2023, 72(8): 087501. doi: 10.7498/aps.72.20230046
    [4] 寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强. 相对论重离子碰撞中的手征效应实验研究. 物理学报, 2023, 72(11): 112504. doi: 10.7498/aps.72.20230109
    [5] 范旭阳, 陈瀚超, 王鹿霞. 弱耦合近似下激子-激子湮灭动力学研究. 物理学报, 2021, 70(22): 227302. doi: 10.7498/aps.70.20211242
    [6] 张仁强, 蒋翔宇, 俞炯弛, 曾充, 宫明, 徐顺. 格点量子色动力学蒸馏算法中关联函数的计算优化. 物理学报, 2021, 70(16): 161201. doi: 10.7498/aps.70.20210030
    [7] 袁晓娟, 王辉, 赵邦宇, 赵敬芬, 明静, 耿延雷, 张凯煜. 随机纵场对一维量子Ising模型动力学性质的影响. 物理学报, 2021, 70(19): 197501. doi: 10.7498/aps.70.20210631
    [8] 毛丽君, 张云波. 三量子比特Dicke模型中的两体和三体纠缠动力学. 物理学报, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [9] 吕海艳, 袁伟, 侯喜文. 场与非线性介质原子相互作用模型的量子纠缠动力学特性. 物理学报, 2013, 62(11): 110301. doi: 10.7498/aps.62.110301
    [10] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学. 物理学报, 2013, 62(13): 130301. doi: 10.7498/aps.62.130301
    [11] 林万涛, 林一骅, 石兰芳, 莫嘉琪. 一类厄尔尼诺-南方涛动耦合振子动力学模型的震荡近似解. 物理学报, 2013, 62(14): 140202. doi: 10.7498/aps.62.140202
    [12] 莫嘉琪, 程荣军, 葛红霞. 一类相对转动非线性动力学模型的近似解. 物理学报, 2011, 60(4): 040203. doi: 10.7498/aps.60.040203
    [13] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子混沌和单粒子相干动力学特性. 物理学报, 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [14] 陈 钢, 庄德文, 张 航, 徐 军, 程 成. 差分法求解时空分布的激光动力学模型. 物理学报, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [15] 马 云, 傅立斌, 杨志安, 刘 杰. 玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性. 物理学报, 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [16] 唐 军, 杨先清, 仇 康. 反应限制聚集模型的动力学行为的研究. 物理学报, 2005, 54(7): 3307-3311. doi: 10.7498/aps.54.3307
    [17] 陈 波, 童培庆. 瓮模型中多粒子动力学的研究. 物理学报, 2005, 54(12): 5554-5558. doi: 10.7498/aps.54.5554
    [18] 阮建红, 薛迅, 朱伟. 量子色动力学演化方程中的高扭度效应. 物理学报, 2002, 51(6): 1214-1220. doi: 10.7498/aps.51.1214
    [19] 刘三秋, 郭 琴, 陶向阳, 付传鸿. 非旋波近似下级联型三能级原子与腔场相互作用的量子动力学性质. 物理学报, 1998, 47(9): 1481-1488. doi: 10.7498/aps.47.1481
    [20] 解伯民. 弹性薄壁杆件的动力稳定. 物理学报, 1956, 12(3): 246-260. doi: 10.7498/aps.12.246
计量
  • 文章访问数:  3705
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-09
  • 修回日期:  2022-07-16
  • 上网日期:  2022-10-18
  • 刊出日期:  2022-11-05

/

返回文章
返回