搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在十厘米尺度的圆柱形聚四氟乙烯探测器内壁涂敷TPB的初步研究

欧阳泽邦 彭朝华 郑健 梁卓 周江枫 赵修良 廖俊辉

引用本文:
Citation:

在十厘米尺度的圆柱形聚四氟乙烯探测器内壁涂敷TPB的初步研究

欧阳泽邦, 彭朝华, 郑健, 梁卓, 周江枫, 赵修良, 廖俊辉

Preliminary studies on TPB coating on inner walls of ten-cm-scale cylindrical PTFE detector

Ouyang Ze-Bang, Peng Zhao-Hua, Zheng Jian, Liang Zhuo, Zhou Jiang-Feng, Zhao Xiu-Liang, Liao Jun-Hui
PDF
HTML
导出引用
  • 液氦时间投影室(ALETHEIA)是一个原创的低质量(100 MeV/c2—10 GeV/c2)暗物质探测装置. 入射粒子在液氦时间投影室中与液氦发生相互作用会产生80 nm长的闪烁光. 目前尚无商用光电读出器件可以直接高效读取该闪烁光. 为此, 需要波长迁移剂(wavelength shifter)先将其转换为可见光, 然后再用商用光电读出器件探测之. 在参考国际相关类似涂敷试验装置的基础上, 利用改进的气相沉积法成功地在直径和高度均为10 cm的圆柱形聚四氟乙烯(PTFE)容器内壁涂敷1.50—3.02 μm. 厚的TPB(tetraphenyl butadiene, 1,1,4,4-四苯基-1,3-丁二烯)涂层. 此工艺方法对其他需要在圆柱形探测器内壁涂敷TPB或者其他类似材料的试验具有参考价值. 本文对TPB涂层的涂敷原理、盛放TPB粉末的源的设计、涂敷工艺、涂层厚度监测等方面进行阐述.
    ALETHEIA (a liquid hElium time projection cHambEr In dark matter) project is an originally creative dark matter experiment aiming to search for low-mass (100 MeV/c2–10 GeV/c2) WIMPs. While there have existed more than ten experiments doing research on low-mass WIMPs, the ALETHEIA is supposed to grow up to be a leading project worldwide due to many unique advantages, including but are not limited to extremely low intrinsic backgrounds, easy purification , and strong potential capability of signal/background discrimination. Owing to the project’s original creativity, there has existed no direct experience of building such a detector yet; consequently, we have to launch a set of R&D programs from scratch, including the TPB coating process conveyed in this paper.An incident particle that hits a liquid helium detector would generate 80-nm-long scintillation. There are currently no commercially available photon detectors capable of efficiently detecting the scintillation light and a wavelength converter must be used to convert the 80-nm-long scintillator into visible light. Silicon photomultipliers (SiPMs) can then be implemented to detect the 450-nm-wavelength light. The TPB (Tetraphenyl Butadiene, 1, 1,4, 4-tetraphenyl-1, 3-butadiene) is widely used for realizing the conversion. Although in thedark matter experiment using argon pulse-shape discrimination (DEAP) , 2.3-μm-thick TPB is successfully coated on the inner wall of the sphere with a radius of 85 cm, we cannot mimic the whole process in our experiment directly out of the two following reasons: (a) our detector shape is cylindrical, not spherical, and (b) the diameter of the current detector prototype is only 10 cm, while the one of the DEAP detectors is as large as 1.7-meter. Consequently, we must design and build an appropriate coating apparatus suitable for our detector. Owing to the existence of necessary auxiliary parts (such as cables for heating and temperature sensors), on which some vapored TPB molecules would be deposited when the coating is in progress. As a result, a blind spot on the inner wall always exists that cannot be fully coated; the blind spot area will affect the visible light yield of 80-nm-long scintillation. To solve the problem, we split the coating process into two steps: coating the curved surface and one base together in the first step and coating another base in the second step. In this way, the cylindrical detector's whole inner wall (the curved surface and the two bases) will be coated. Another key technology is to design an appropriate source sphere containing TPB powder. There are 20 holes evenly distributed on the surface of the sphere. After the TPB powder is heated andevaporated into the gas, the TPB molecules should move slowly enough to ensure that they scatter from each other long enough within the source before randomly finding a hole to escape. As a result, the TPB molecules come out of the source in an isotropic way then adhere to the inner surfaces of a cylindrical detector (diameter and height are both 10 cm) with nearly the same thickness. The TPB coating thickness on the inner wall is in a range between 1.50 and 3.02 μm, which corresponds to the thinnest and thickest TPB plate, respectively. The variation mainly comes from the different distances from the coating place to the source, which lies at the center of the PTFE cylinder. The thickness difference will not bother us because the conversion efficiency for 80-nm-long scintillation is almost the same as that for the TPB thickness in a range from 0.7 to 3.7 μm.In addition to introducing the ALETHEIA project briefly at the beginning, we mainly address several aspects of TPB coating: coating principle, source design, coating process, coating thickness monitoring, and the comparison of thickness among coating plates from three independent methods. The whole process addressed in this paper is expected to provide a valuable reference for other experiments with similar requirements.
      通信作者: 赵修良, zhaoxiul@usc.edu.cn ; 廖俊辉, junhui_private@163.com
    • 基金项目: 中国原子能科学研究院院长基金(批准号: YZ202101-WL)和国家自然科学基金资助项目(批准号: 12005098)资助的课题.
      Corresponding author: Zhao Xiu-Liang, zhaoxiul@usc.edu.cn ; Liao Jun-Hui, junhui_private@163.com
    • Funds: Project supported by the President’s Foundation of China Institute of Atomic Energy (Grant No.YZ202101-WL), and The National Natural Science Foundation of China (Grant No. 12005098).
    [1]

    Zwicky F 1933 Helv. Phys. Acta 6 110

    [2]

    Zwicky F 1937 Astrophys. J. 86 217Google Scholar

    [3]

    Rubin V C, Ford Jr W K 1970 Astrophys. J. 159 379Google Scholar

    [4]

    Salucci P, Nesti F, Gentile G, Martins C F 2010 Astron. Astrophys. 523 A83Google Scholar

    [5]

    Borriello A, Salucci P 2001 Mon. Not. R. Astron. Soc. 323 285Google Scholar

    [6]

    CDEXhttp://cdex.ep.tsinghua.edu.cn/ (accessed 2022-6-26)

    [7]

    PandaXhttps://pandax.sjtu.edu.cn/ (accessed 2022-6-26)

    [8]

    Dampehttp://dampe.ustc.edu.cn/ (accessed 2022-6-26)

    [9]

    Akula S, Feldman D, Liu Z, Nath P, Peim G 2011 Mod. Phys. Lett. A 26 1521Google Scholar

    [10]

    Aalbers J, Akerib D S, Akerlof C W, Al Musalhi A K, Alder F, Alqahtani A, Kraus H 2022 arXiv: 2207.03764

    [11]

    Liao J, Gao Y, Liang Z, Ouyang Z, Peng C, Zhang F, Zhang L, Zheng J, Zhou J 2022 arXiv preprint arXiv: 2203.07901

    [12]

    Liao J, Gao Y, Liang Z, Peng Z, Zhang L, Zhang L 2021 arXiv preprint arXiv: 2103.02161

    [13]

    Biekert A, Chang C, Fink C, Garcia-Sciveres M, Glazer E, Guo W, Hertel S, Kravitz S, Lin J, Lisovenko M 2022 Phys. Rev. D 105 092005Google Scholar

    [14]

    McKinsey D, Brome C, Dzhosyuk S, Golub R, Habicht K, Huffman P, Korobkina E, Lamoreaux S K, Mattoni C, Thompson A K 2003 Phys. Rev. A 67 062716Google Scholar

    [15]

    Ito T, Seidel G 2013 Phys. Rev. C 88 025805Google Scholar

    [16]

    Phan N, Cianciolo V, Clayton S, Currie S, Dipert R, Ito T, MacDonald S, O'Shaughnessy C, Ramsey J, Seidel G 2020 Phys. Rev. C 102 035503Google Scholar

    [17]

    Ito T, Clayton S, Ramsey J, Karcz M, Liu C Y, Long J, Reddy T, Seidel G 2012 Phys. Rev. A 85 042718Google Scholar

    [18]

    Seidel G, Ito T, Ghosh A, Sethumadhavan B 2014 Phys. Rev. C 89 025808Google Scholar

    [19]

    Ito T, Ramsey J, Yao W, Beck D, Cianciolo V, Clayton S, Crawford C, Currie S, Filippone B, Griffith W 2016 Rev. Sci. Instrum. 87 045113Google Scholar

    [20]

    Benson C, Orebi Gann G D, Gehman V 2018 Eur. Phys. J. C 78 1Google Scholar

    [21]

    Howard B, Mufson S, Whittington D, Adams B, Baugh B, Jordan J, Karty J, Macias C, Pla-Dalmau A 2018 Nucl. Instrum. Meth. A 907 9Google Scholar

    [22]

    Pollmann T, Boulay M, Kuźniak M 2011 Nucl. Instrum. Meth. A 635 127Google Scholar

    [23]

    Yang H, Xu Z-F, Tang J, Zhang Y 2020 Nucl. Sci. Tech. 31 1Google Scholar

    [24]

    Bonesini M, Cervi T, Falcone A, Kose U, Mazza R, Menegolli A, Montanari C, Nessi M, Prata M, Rappoldi A 2018 J. Instrum. 13 P12020Google Scholar

    [25]

    Broerman B 2015 M. S. Dissertation (Kingston: Queen's University) (in Canada)

    [26]

    Broerman B, Boulay M G, Cai B, Cranshaw D, Dering K, Florian S, Gagnon R, Giampa P, Gilmour C, Hearns C 2017 J. Instrum. 12 P04017Google Scholar

    [27]

    Pollmann T 2012 Ph. D. Dissertation (Kingston: Queen's University) (in Canada)

    [28]

    http://sciens-cn.com/Demo_1052.html (accessed 2022-06-26)

    [29]

    https://www.fluke.com/en-us/product/temperature-measurement/ir-thermometers/fluke-54-ii (accessed 2022-06-26)

  • 图 1  30 g LHe原型机-V1及其零件图 (a) 在中国原子能科学研究院设计和制作的30 g液氦原型机-V1; (b) 真空容器内部; (c) 30 g液氦小室; (d) 将30 g液氦小室拆开后的零件

    Fig. 1.  The anatomy of the first version of the house-made 30 g LHe detector: (a) The first version of the 30 g LHe detector system designed, assembled, and tested at CIAE; (b) the inner side of the vacuum vessel; (c) the 30 g LHe cell; (d) the parts of the 30 g LHe cell.

    图 2  30 g LHe原型机-V1 冷却到液氦温度时的仪器示数

    Fig. 2.  Instrument readings of 30 g LHe Prototype-V1cooled to liquid helium temperature.

    图 3  30 g LHe原型机-V2及其辅助设备的原理图

    Fig. 3.  The schematic drawing of the 30 g V2 LHe prototype detector and its auxiliary system.

    图 4  PTFE液氦小室, 直径和高度均为10 cm (a) PTFE小室剖面图; (b) PTFE小室实物图

    Fig. 4.  The cylindrical shape LHe cell, made of PTFE, with the dimension of 10 cm for both diameter and height: (a) The schematic drawing of the 10 cm scale LHe cell, made of PTFE; (b) the house-made 10 cm scale PTFE LHe cell.

    图 5  TPB涂敷高和直径均为10 cm的圆柱体原理图

    Fig. 5.  A schematic drawing shows the process of TPB coating in a 10 cm scale PTFE detector.

    图 6  TPB源及其坩埚 (a) TPB源; (b) TPB源内的坩埚、加热丝、温度探头; (c) TPB源的剖面图

    Fig. 6.  The source and crucible used for TPB coating: (a) The TPB source; (b) the crucible, heating cable, and temperature sensor; (c) the perspective view of the inside of the source.

    图 7  TPB涂敷试验的部分实验设备

    Fig. 7.  The controlling and monitoring system of TPB coating

    图 8  为TPB涂敷专门设计和制作的工装上端盖(视角为从下往上)

    Fig. 8.  The specially designed and built upper base used for TPB coating (looking from inside).

    图 9  涂敷试验的装配示意图, 图中未画加热丝、探头和导线, 表面为蓝色的区域为小室的涂敷表面 (a) 对小室桶部和下端盖的涂敷(蓝色区域); (b) 对小室上端盖的涂敷(蓝色区域)

    Fig. 9.  The assembly diagrams of TPB coating: (a) Coating on the inner wall of the curved surface and a base, as the blue region shows; (b) coating on another base, as shown on the blue area.

    图 10  用紫外手电筒检查TPB涂层 (a) 小室部分的紫外手电检测; (b) 用于检测涂层厚度的4片铝样片

    Fig. 10.  Check the TPB coating layer with an UV torch: (a) Lighting up the coating layer with an UV torch; (b) the four aluminum plates used for coating layer thickness monitoring.

    图 11  TPB涂层的实时温度监测(来自FLUKE温度计软件)其中T1为铠装加热丝温度, T2为坩埚温度

    Fig. 11.  Real-time temperature monitoring on TPB coating (Reading with the two FLUKE temperature sensors directly). T1 shows the temperature of the heating cable, T2 corresponds to the crucible's temperature.

    图 12  TPB涂层的实时厚度监测

    Fig. 12.  Real-time thickness monitoring on TPB coating.

    图 13  在10 cm尺度的PTFE探测器内壁涂敷3 μm厚的TPB层

    Fig. 13.  3 μm TPB layer coated on the inner wall of a 10 cm scale PTFE detector.

    表 1  根据涂覆前后的质量差计算的TPB涂覆厚度

    Table 1.  TPB coating thickness calculation based on the mass difference before and after coating on the aluminum plates.

    编号测试面
    积/cm2
    铝片安装
    位置
    试验前后
    增加质量/mg
    膜厚/μm
    12工装内壁0.75 ± 0.023.48 ± 0.11
    22工装内壁0.46 ± 0.042.13 ± 0.17
    32小室桶壁0.87 ± 0.044.03 ± 0.16
    46小室底面2.54 ± 0.023.92 ± 0.03
    下载: 导出CSV

    表 A1  1号铝片的五次称重质量

    Table A1.  Five times measurement of the mass of 1# aluminum film.

    序号试验前称重/mg试验后称重/mg
    192.8493.53
    292.8393.58
    392.8693.57
    492.7893.63
    592.8093.54
    下载: 导出CSV
  • [1]

    Zwicky F 1933 Helv. Phys. Acta 6 110

    [2]

    Zwicky F 1937 Astrophys. J. 86 217Google Scholar

    [3]

    Rubin V C, Ford Jr W K 1970 Astrophys. J. 159 379Google Scholar

    [4]

    Salucci P, Nesti F, Gentile G, Martins C F 2010 Astron. Astrophys. 523 A83Google Scholar

    [5]

    Borriello A, Salucci P 2001 Mon. Not. R. Astron. Soc. 323 285Google Scholar

    [6]

    CDEXhttp://cdex.ep.tsinghua.edu.cn/ (accessed 2022-6-26)

    [7]

    PandaXhttps://pandax.sjtu.edu.cn/ (accessed 2022-6-26)

    [8]

    Dampehttp://dampe.ustc.edu.cn/ (accessed 2022-6-26)

    [9]

    Akula S, Feldman D, Liu Z, Nath P, Peim G 2011 Mod. Phys. Lett. A 26 1521Google Scholar

    [10]

    Aalbers J, Akerib D S, Akerlof C W, Al Musalhi A K, Alder F, Alqahtani A, Kraus H 2022 arXiv: 2207.03764

    [11]

    Liao J, Gao Y, Liang Z, Ouyang Z, Peng C, Zhang F, Zhang L, Zheng J, Zhou J 2022 arXiv preprint arXiv: 2203.07901

    [12]

    Liao J, Gao Y, Liang Z, Peng Z, Zhang L, Zhang L 2021 arXiv preprint arXiv: 2103.02161

    [13]

    Biekert A, Chang C, Fink C, Garcia-Sciveres M, Glazer E, Guo W, Hertel S, Kravitz S, Lin J, Lisovenko M 2022 Phys. Rev. D 105 092005Google Scholar

    [14]

    McKinsey D, Brome C, Dzhosyuk S, Golub R, Habicht K, Huffman P, Korobkina E, Lamoreaux S K, Mattoni C, Thompson A K 2003 Phys. Rev. A 67 062716Google Scholar

    [15]

    Ito T, Seidel G 2013 Phys. Rev. C 88 025805Google Scholar

    [16]

    Phan N, Cianciolo V, Clayton S, Currie S, Dipert R, Ito T, MacDonald S, O'Shaughnessy C, Ramsey J, Seidel G 2020 Phys. Rev. C 102 035503Google Scholar

    [17]

    Ito T, Clayton S, Ramsey J, Karcz M, Liu C Y, Long J, Reddy T, Seidel G 2012 Phys. Rev. A 85 042718Google Scholar

    [18]

    Seidel G, Ito T, Ghosh A, Sethumadhavan B 2014 Phys. Rev. C 89 025808Google Scholar

    [19]

    Ito T, Ramsey J, Yao W, Beck D, Cianciolo V, Clayton S, Crawford C, Currie S, Filippone B, Griffith W 2016 Rev. Sci. Instrum. 87 045113Google Scholar

    [20]

    Benson C, Orebi Gann G D, Gehman V 2018 Eur. Phys. J. C 78 1Google Scholar

    [21]

    Howard B, Mufson S, Whittington D, Adams B, Baugh B, Jordan J, Karty J, Macias C, Pla-Dalmau A 2018 Nucl. Instrum. Meth. A 907 9Google Scholar

    [22]

    Pollmann T, Boulay M, Kuźniak M 2011 Nucl. Instrum. Meth. A 635 127Google Scholar

    [23]

    Yang H, Xu Z-F, Tang J, Zhang Y 2020 Nucl. Sci. Tech. 31 1Google Scholar

    [24]

    Bonesini M, Cervi T, Falcone A, Kose U, Mazza R, Menegolli A, Montanari C, Nessi M, Prata M, Rappoldi A 2018 J. Instrum. 13 P12020Google Scholar

    [25]

    Broerman B 2015 M. S. Dissertation (Kingston: Queen's University) (in Canada)

    [26]

    Broerman B, Boulay M G, Cai B, Cranshaw D, Dering K, Florian S, Gagnon R, Giampa P, Gilmour C, Hearns C 2017 J. Instrum. 12 P04017Google Scholar

    [27]

    Pollmann T 2012 Ph. D. Dissertation (Kingston: Queen's University) (in Canada)

    [28]

    http://sciens-cn.com/Demo_1052.html (accessed 2022-06-26)

    [29]

    https://www.fluke.com/en-us/product/temperature-measurement/ir-thermometers/fluke-54-ii (accessed 2022-06-26)

  • [1] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成. 物理学报, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [2] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [3] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响. 物理学报, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [4] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性对含可溶性活性剂垂直液膜排液的影响. 物理学报, 2018, 67(21): 214703. doi: 10.7498/aps.67.20181020
    [5] 叶学民, 杨少东, 李春曦. 随活性剂浓度变化的分离压对垂直液膜排液过程的影响. 物理学报, 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [6] 史晓慧, 许珂敬. 溶胶-凝胶-蒸镀法制备高性能FTO薄膜. 物理学报, 2016, 65(13): 138101. doi: 10.7498/aps.65.138101
    [7] 李春曦, 陈朋强, 叶学民. 含活性剂液滴在倾斜粗糙壁面上的铺展稳定性. 物理学报, 2015, 64(1): 014702. doi: 10.7498/aps.64.014702
    [8] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响. 物理学报, 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [9] 李春曦, 姜凯, 叶学民. 含活性剂液膜去润湿演化的稳定性特征. 物理学报, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [10] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性. 物理学报, 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [11] 颜骏. Klein-Gordon方程Q球解中能量稳定性和扰动研究. 物理学报, 2013, 62(23): 230301. doi: 10.7498/aps.62.230301
    [12] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [13] 李红凯, 林国强, 董 闯. 脉冲偏压电弧离子镀CNx薄膜研究. 物理学报, 2008, 57(10): 6636-6642. doi: 10.7498/aps.57.6636
    [14] 刘 辽, 裴寿镛. 量子史瓦茨黑洞和暗物质. 物理学报, 2006, 55(9): 4980-4982. doi: 10.7498/aps.55.4980
    [15] 沈自才, 王英剑, 范正修, 邵建达. 双源共蒸法制备非均匀膜的模型分析. 物理学报, 2005, 54(1): 295-301. doi: 10.7498/aps.54.295
    [16] 曹福广, 杨善德. 具有Gogny等效核力的有限核物质的饱和性质与液气相变. 物理学报, 1994, 43(5): 725-733. doi: 10.7498/aps.43.725
    [17] 曹福广, 杨善德. 具有Gogny等效核力的有限核物质的饱和性质与液气相变. 物理学报, 1993, 42(11): 1747-1755. doi: 10.7498/aps.42.1747
    [18] 王能平, 杨善德. 有限核物质的饱和性质与液气相变. 物理学报, 1992, 41(4): 561-567. doi: 10.7498/aps.41.561
    [19] 李竹起, 阮景辉, 吴善令, 杨同华, 何敏, 陆挺, 成之绪, 陈桂英, 叶春堂. 用于凝聚态物质研究的旋转晶体中子飞行时间谱仪. 物理学报, 1980, 29(11): 1462-1470. doi: 10.7498/aps.29.1462
    [20] 冉启泽. 简单可靠的氦液面计. 物理学报, 1976, 25(3): 270-270. doi: 10.7498/aps.25.270
计量
  • 文章访问数:  3425
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-07-23
  • 上网日期:  2022-11-09
  • 刊出日期:  2022-11-20

/

返回文章
返回