-
可积系统研究是物理和数学等学科的重要研究课题. 然而, 通常的可积系统研究往往被限制在(1+1)维和(2+1)维, 其原因是高维可积系统极其稀少. 最近, 我们发现利用形变术可以从低维可积系统导出大量的高维可积系统. 本文利用形变术, 将(1+1)维的Kaup-Newell (KN)系统推广到(4+1)维系统. 新系统除了包含原来的(1+1)维的KN系统外, 还包含三种(1+1)维KN系统的互反形式. 模型也包含了许多新的(D+1)维(
$ D\leqslant3 $ )的互反型可积系统. (4+1)维互反型KN系统的Lax可积性和对称可积性也被证明. 新的互反型高维KN系统的求解非常困难. 本文仅研究(2+1)维互反型导数非线性薛定谔方程的行波解, 并给出薛定谔方程孤子解的隐函数表达式.-
关键词:
- 高维可积模型 /
- Kaup-Newell系统 /
- 形变术 /
- 行波解
The study of integrable systems is one of important topics both in physics and in mathematics. However, traditional studies on integrable systems are usually restricted in (1+1) and (2+1) dimensions. The main reasons come from the fact that high-dimensional integrable systems are extremely rare. Recently, we found that a large number of high dimensional integrable systems can be derived from low dimensional ones by means of a deformation algorithm. In this paper, the (1+1) dimensional Kaup-Newell (KN) system is extended to a (4+1) dimensional system with the help of the deformation algorithm. In addition to the original (1+1) dimensional KN system, the new system also contains three reciprocal forms of the (1+1) dimensional KN system. The model also contains a large number of new (D+1) dimensional ($D \leqslant 3$ ) integrable systems. The Lax integrability and symmetry integrability of the (4+1) dimensional KN system are also proved. It is very difficult to solve the new high-dimensional KN systems. In this paper, we only investigate the traveling wave solutions of a (2+1) dimensional reciprocal derivative nonlinear Schrödinger equation. The general envelope travelling wave can be expressed by a complicated elliptic integral. The single envelope dark (gray) soliton of the derivative nonlinear Schödinger equation can be implicitly written.-
Keywords:
- higher dimensional integrable models /
- Kaup-Newell systems /
- deformation algorithm /
- travelling wave solutions
[1] Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095Google Scholar
[2] Miura R M 1968 J. Math. Phys. 9 1022
[3] Olver P J 1993 Applications of Lie Groups to Differential Equations (2nd Ed.) (New York: Springer)
[4] Lou S Y 1993 Phys. Rev. Lett. 71 4099Google Scholar
[5] Lou S Y, Hu X B, Liu Q P 2021 JHEP 07 058Google Scholar
[6] Ramani A, Gramaticos B, Bountis T 1989 Phys. Rep. 180 159Google Scholar
[7] Conte R 1989 Phys. Lett. A 140 383Google Scholar
[8] Lou S Y 1998 Z. Naturforsch 53a 251
[9] 楼森岳 1998 物理学报 47 1937Google Scholar
Lou S Y 1998 Acta Phys. Sin. 47 1937Google Scholar
[10] Lou S Y 1998 Phys. Rev. Lett. 80 5027Google Scholar
[11] Hirota R 1971 Phys. Rev. Lett. 27 1192Google Scholar
[12] Rogers C, Schief W K 2002 Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory (Cambridge: Cambridge University Press)
[13] Liu Q P, Mañas M 2000 Phys. Lett. B 485 293Google Scholar
[14] Hao X Z, Lou S Y 2022 Math. Meth. Appl. Sci. 45 5774Google Scholar
[15] Lou S Y 1993 Phys. Lett. B 302 261Google Scholar
[16] Nijhoff F W, Sun Y Y, Zhang D J 2023 Commun. Math. Phys. 399 599Google Scholar
[17] Zhang D J, Zhao S L 2013 Stud. Appl. Math. 131 72Google Scholar
[18] Liu Q P, Hu X B 2005 J. Phys. A 38 6371Google Scholar
[19] Gao X N, Lou S Y, Tang X Y 2013 JHEP 05 029Google Scholar
[20] Xia S Q, Kaltsas D, Song D H, et al. 2021 Science 372 72Google Scholar
[21] Loutsenko I, Roubtsov D 1997 Phys. Rev. Lett. 78 3011Google Scholar
[22] Weigel H, Gamberg L, Reinhardt H 1997 Phys. Rev. D 55 6910Google Scholar
[23] Dolan L 1997 Nucl. Phys. B 489 245Google Scholar
[24] Chiueh T, Woo T P 1997 Phys. Rev. E 55 1048Google Scholar
[25] Tajiri M, Maesono H 1997 Phys. Rev. E 55 3351
[26] Chang D E, Vuletic V, Lukin M D 2014 Nat. Photonics 8 685Google Scholar
[27] Das G C 1997 Phys. Plasmas 4 2095Google Scholar
[28] Jia M, Lou S Y 2006 Phy. Lett. A 353 407Google Scholar
[29] Hu H C, Lou S Y, Chow K W 2007 Chaos, Solitons and Fractals 31 1213Google Scholar
[30] Lou S Y 1997 J. Phys. A: Math. Phys. 30 7259Google Scholar
[31] Lou S Y, Hao X Z, Jia M 2023 JHEP 03 018
[32] Kaup D J, Newell A C 1978 J. Math. Phys. 19 798Google Scholar
-
图 1 导数非线性薛定谔方程(56)的单孤子解((61)式) (a) 参数取值为
$ b = 20, \ c = 1, \ k_2 = 1/2000, \ k_1 = 2, \ a = 1, \ X_0 = 0 $ ; (b) 参数取值为$ b = 20, \ c = 1, \ k_2 = 1, \ k_1 = 2, \ a = 1, \ X_0 = 1.563 $ ; (c) 由(61)式和$ c = 0 $ 表示的暗尖峰孤子结构, 其他参数与图(b)相同Fig. 1. Single soliton solution (Eq. (61)) of the nonlinear Schrödinger equation (56): (a) Parameters are selected as
$b = 20, $ $ \ c = 1, \ k_2 = 1/2000, \ k_1 = 2, \ a = 1, \ X_0 = 0$ ; (b) parameters are selected as$b = 20, \ c = 1, \ k_2 = 1, \ k_1 = 2, $ $ \ a = 1, \ X_0 = 1.563$ ; (c) a dark peakon soliton solution expressed by Eq. (61) with$ c = 0 $ and other parameters are same as in panel (b) -
[1] Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095Google Scholar
[2] Miura R M 1968 J. Math. Phys. 9 1022
[3] Olver P J 1993 Applications of Lie Groups to Differential Equations (2nd Ed.) (New York: Springer)
[4] Lou S Y 1993 Phys. Rev. Lett. 71 4099Google Scholar
[5] Lou S Y, Hu X B, Liu Q P 2021 JHEP 07 058Google Scholar
[6] Ramani A, Gramaticos B, Bountis T 1989 Phys. Rep. 180 159Google Scholar
[7] Conte R 1989 Phys. Lett. A 140 383Google Scholar
[8] Lou S Y 1998 Z. Naturforsch 53a 251
[9] 楼森岳 1998 物理学报 47 1937Google Scholar
Lou S Y 1998 Acta Phys. Sin. 47 1937Google Scholar
[10] Lou S Y 1998 Phys. Rev. Lett. 80 5027Google Scholar
[11] Hirota R 1971 Phys. Rev. Lett. 27 1192Google Scholar
[12] Rogers C, Schief W K 2002 Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory (Cambridge: Cambridge University Press)
[13] Liu Q P, Mañas M 2000 Phys. Lett. B 485 293Google Scholar
[14] Hao X Z, Lou S Y 2022 Math. Meth. Appl. Sci. 45 5774Google Scholar
[15] Lou S Y 1993 Phys. Lett. B 302 261Google Scholar
[16] Nijhoff F W, Sun Y Y, Zhang D J 2023 Commun. Math. Phys. 399 599Google Scholar
[17] Zhang D J, Zhao S L 2013 Stud. Appl. Math. 131 72Google Scholar
[18] Liu Q P, Hu X B 2005 J. Phys. A 38 6371Google Scholar
[19] Gao X N, Lou S Y, Tang X Y 2013 JHEP 05 029Google Scholar
[20] Xia S Q, Kaltsas D, Song D H, et al. 2021 Science 372 72Google Scholar
[21] Loutsenko I, Roubtsov D 1997 Phys. Rev. Lett. 78 3011Google Scholar
[22] Weigel H, Gamberg L, Reinhardt H 1997 Phys. Rev. D 55 6910Google Scholar
[23] Dolan L 1997 Nucl. Phys. B 489 245Google Scholar
[24] Chiueh T, Woo T P 1997 Phys. Rev. E 55 1048Google Scholar
[25] Tajiri M, Maesono H 1997 Phys. Rev. E 55 3351
[26] Chang D E, Vuletic V, Lukin M D 2014 Nat. Photonics 8 685Google Scholar
[27] Das G C 1997 Phys. Plasmas 4 2095Google Scholar
[28] Jia M, Lou S Y 2006 Phy. Lett. A 353 407Google Scholar
[29] Hu H C, Lou S Y, Chow K W 2007 Chaos, Solitons and Fractals 31 1213Google Scholar
[30] Lou S Y 1997 J. Phys. A: Math. Phys. 30 7259Google Scholar
[31] Lou S Y, Hao X Z, Jia M 2023 JHEP 03 018
[32] Kaup D J, Newell A C 1978 J. Math. Phys. 19 798Google Scholar
计量
- 文章访问数: 3422
- PDF下载量: 109
- 被引次数: 0