搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

互反型高维可积Kaup-Newell系统

楼森岳 郝夏芝 贾曼

引用本文:
Citation:

互反型高维可积Kaup-Newell系统

楼森岳, 郝夏芝, 贾曼
cstr: 32037.14.aps.72.20222418

Higher dimensional reciprocal integrable Kaup-Newell systems

Lou Sen-Yue, Hao Xia-Zhi, Jia Man
cstr: 32037.14.aps.72.20222418
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 可积系统研究是物理和数学等学科的重要研究课题. 然而, 通常的可积系统研究往往被限制在(1+1)维和(2+1)维, 其原因是高维可积系统极其稀少. 最近, 我们发现利用形变术可以从低维可积系统导出大量的高维可积系统. 本文利用形变术, 将(1+1)维的Kaup-Newell (KN)系统推广到(4+1)维系统. 新系统除了包含原来的(1+1)维的KN系统外, 还包含三种(1+1)维KN系统的互反形式. 模型也包含了许多新的(D+1)维($ D\leqslant3 $)的互反型可积系统. (4+1)维互反型KN系统的Lax可积性和对称可积性也被证明. 新的互反型高维KN系统的求解非常困难. 本文仅研究(2+1)维互反型导数非线性薛定谔方程的行波解, 并给出薛定谔方程孤子解的隐函数表达式.
    The study of integrable systems is one of important topics both in physics and in mathematics. However, traditional studies on integrable systems are usually restricted in (1+1) and (2+1) dimensions. The main reasons come from the fact that high-dimensional integrable systems are extremely rare. Recently, we found that a large number of high dimensional integrable systems can be derived from low dimensional ones by means of a deformation algorithm. In this paper, the (1+1) dimensional Kaup-Newell (KN) system is extended to a (4+1) dimensional system with the help of the deformation algorithm. In addition to the original (1+1) dimensional KN system, the new system also contains three reciprocal forms of the (1+1) dimensional KN system. The model also contains a large number of new (D+1) dimensional ($D \leqslant 3$) integrable systems. The Lax integrability and symmetry integrability of the (4+1) dimensional KN system are also proved. It is very difficult to solve the new high-dimensional KN systems. In this paper, we only investigate the traveling wave solutions of a (2+1) dimensional reciprocal derivative nonlinear Schrödinger equation. The general envelope travelling wave can be expressed by a complicated elliptic integral. The single envelope dark (gray) soliton of the derivative nonlinear Schödinger equation can be implicitly written.
      通信作者: 楼森岳, lousenyue@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12235007, 11975131, 11435005)、宁波大学王宽诚幸福基金和浙江省自然科学基金(批准号: LQ20A010009)资助的课题
      Corresponding author: Lou Sen-Yue, lousenyue@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12235007, 11975131, 11435005), the K. C. Wong Magna Fund in Ningbo University, and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ20A010009)
    [1]

    Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095Google Scholar

    [2]

    Miura R M 1968 J. Math. Phys. 9 1022

    [3]

    Olver P J 1993 Applications of Lie Groups to Differential Equations (2nd Ed.) (New York: Springer)

    [4]

    Lou S Y 1993 Phys. Rev. Lett. 71 4099Google Scholar

    [5]

    Lou S Y, Hu X B, Liu Q P 2021 JHEP 07 058Google Scholar

    [6]

    Ramani A, Gramaticos B, Bountis T 1989 Phys. Rep. 180 159Google Scholar

    [7]

    Conte R 1989 Phys. Lett. A 140 383Google Scholar

    [8]

    Lou S Y 1998 Z. Naturforsch 53a 251

    [9]

    楼森岳 1998 物理学报 47 1937Google Scholar

    Lou S Y 1998 Acta Phys. Sin. 47 1937Google Scholar

    [10]

    Lou S Y 1998 Phys. Rev. Lett. 80 5027Google Scholar

    [11]

    Hirota R 1971 Phys. Rev. Lett. 27 1192Google Scholar

    [12]

    Rogers C, Schief W K 2002 Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory (Cambridge: Cambridge University Press)

    [13]

    Liu Q P, Mañas M 2000 Phys. Lett. B 485 293Google Scholar

    [14]

    Hao X Z, Lou S Y 2022 Math. Meth. Appl. Sci. 45 5774Google Scholar

    [15]

    Lou S Y 1993 Phys. Lett. B 302 261Google Scholar

    [16]

    Nijhoff F W, Sun Y Y, Zhang D J 2023 Commun. Math. Phys. 399 599Google Scholar

    [17]

    Zhang D J, Zhao S L 2013 Stud. Appl. Math. 131 72Google Scholar

    [18]

    Liu Q P, Hu X B 2005 J. Phys. A 38 6371Google Scholar

    [19]

    Gao X N, Lou S Y, Tang X Y 2013 JHEP 05 029Google Scholar

    [20]

    Xia S Q, Kaltsas D, Song D H, et al. 2021 Science 372 72Google Scholar

    [21]

    Loutsenko I, Roubtsov D 1997 Phys. Rev. Lett. 78 3011Google Scholar

    [22]

    Weigel H, Gamberg L, Reinhardt H 1997 Phys. Rev. D 55 6910Google Scholar

    [23]

    Dolan L 1997 Nucl. Phys. B 489 245Google Scholar

    [24]

    Chiueh T, Woo T P 1997 Phys. Rev. E 55 1048Google Scholar

    [25]

    Tajiri M, Maesono H 1997 Phys. Rev. E 55 3351

    [26]

    Chang D E, Vuletic V, Lukin M D 2014 Nat. Photonics 8 685Google Scholar

    [27]

    Das G C 1997 Phys. Plasmas 4 2095Google Scholar

    [28]

    Jia M, Lou S Y 2006 Phy. Lett. A 353 407Google Scholar

    [29]

    Hu H C, Lou S Y, Chow K W 2007 Chaos, Solitons and Fractals 31 1213Google Scholar

    [30]

    Lou S Y 1997 J. Phys. A: Math. Phys. 30 7259Google Scholar

    [31]

    Lou S Y, Hao X Z, Jia M 2023 JHEP 03 018

    [32]

    Kaup D J, Newell A C 1978 J. Math. Phys. 19 798Google Scholar

  • 图 1  导数非线性薛定谔方程(56)的单孤子解((61)式) (a) 参数取值为$ b = 20, \ c = 1, \ k_2 = 1/2000, \ k_1 = 2, \ a = 1, \ X_0 = 0 $; (b) 参数取值为$ b = 20, \ c = 1, \ k_2 = 1, \ k_1 = 2, \ a = 1, \ X_0 = 1.563 $; (c) 由(61)式和$ c = 0 $表示的暗尖峰孤子结构, 其他参数与图(b)相同

    Fig. 1.  Single soliton solution (Eq. (61)) of the nonlinear Schrödinger equation (56): (a) Parameters are selected as $b = 20, $$ \ c = 1, \ k_2 = 1/2000, \ k_1 = 2, \ a = 1, \ X_0 = 0$; (b) parameters are selected as $b = 20, \ c = 1, \ k_2 = 1, \ k_1 = 2, $$ \ a = 1, \ X_0 = 1.563$; (c) a dark peakon soliton solution expressed by Eq. (61) with $ c = 0 $ and other parameters are same as in panel (b)

  • [1]

    Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095Google Scholar

    [2]

    Miura R M 1968 J. Math. Phys. 9 1022

    [3]

    Olver P J 1993 Applications of Lie Groups to Differential Equations (2nd Ed.) (New York: Springer)

    [4]

    Lou S Y 1993 Phys. Rev. Lett. 71 4099Google Scholar

    [5]

    Lou S Y, Hu X B, Liu Q P 2021 JHEP 07 058Google Scholar

    [6]

    Ramani A, Gramaticos B, Bountis T 1989 Phys. Rep. 180 159Google Scholar

    [7]

    Conte R 1989 Phys. Lett. A 140 383Google Scholar

    [8]

    Lou S Y 1998 Z. Naturforsch 53a 251

    [9]

    楼森岳 1998 物理学报 47 1937Google Scholar

    Lou S Y 1998 Acta Phys. Sin. 47 1937Google Scholar

    [10]

    Lou S Y 1998 Phys. Rev. Lett. 80 5027Google Scholar

    [11]

    Hirota R 1971 Phys. Rev. Lett. 27 1192Google Scholar

    [12]

    Rogers C, Schief W K 2002 Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory (Cambridge: Cambridge University Press)

    [13]

    Liu Q P, Mañas M 2000 Phys. Lett. B 485 293Google Scholar

    [14]

    Hao X Z, Lou S Y 2022 Math. Meth. Appl. Sci. 45 5774Google Scholar

    [15]

    Lou S Y 1993 Phys. Lett. B 302 261Google Scholar

    [16]

    Nijhoff F W, Sun Y Y, Zhang D J 2023 Commun. Math. Phys. 399 599Google Scholar

    [17]

    Zhang D J, Zhao S L 2013 Stud. Appl. Math. 131 72Google Scholar

    [18]

    Liu Q P, Hu X B 2005 J. Phys. A 38 6371Google Scholar

    [19]

    Gao X N, Lou S Y, Tang X Y 2013 JHEP 05 029Google Scholar

    [20]

    Xia S Q, Kaltsas D, Song D H, et al. 2021 Science 372 72Google Scholar

    [21]

    Loutsenko I, Roubtsov D 1997 Phys. Rev. Lett. 78 3011Google Scholar

    [22]

    Weigel H, Gamberg L, Reinhardt H 1997 Phys. Rev. D 55 6910Google Scholar

    [23]

    Dolan L 1997 Nucl. Phys. B 489 245Google Scholar

    [24]

    Chiueh T, Woo T P 1997 Phys. Rev. E 55 1048Google Scholar

    [25]

    Tajiri M, Maesono H 1997 Phys. Rev. E 55 3351

    [26]

    Chang D E, Vuletic V, Lukin M D 2014 Nat. Photonics 8 685Google Scholar

    [27]

    Das G C 1997 Phys. Plasmas 4 2095Google Scholar

    [28]

    Jia M, Lou S Y 2006 Phy. Lett. A 353 407Google Scholar

    [29]

    Hu H C, Lou S Y, Chow K W 2007 Chaos, Solitons and Fractals 31 1213Google Scholar

    [30]

    Lou S Y 1997 J. Phys. A: Math. Phys. 30 7259Google Scholar

    [31]

    Lou S Y, Hao X Z, Jia M 2023 JHEP 03 018

    [32]

    Kaup D J, Newell A C 1978 J. Math. Phys. 19 798Google Scholar

计量
  • 文章访问数:  5216
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-19
  • 上网日期:  2023-02-01
  • 刊出日期:  2023-05-20

/

返回文章
返回