-
提出了一种新的处理有耗型德拜色散媒质的单步蛙跳遵从发散隐式-时域有限差分(complying divergence implicit FDTD, CDI-FDTD)方法. 从频域下的Maxwell方程出发, 利用傅里叶变换将电磁场分量从频域转换到时域, 并采用递归积分(recursive integration, RI)方法对频域-时域转换过程中存在的积分项进行近似处理. 然后应用单步蛙跳隐式格式对时域Maxwell方程和辅助变量进行差分离散, 推导出有耗型德拜色散媒质的RI-CDI-FDTD算法的迭代公式. 接着利用von Neumann 方法验证了基于RI方法的CDI-FDTD算法的无条件稳定特性, 最后通过数值算例验证了本文所提方法的正确性和有效性.
-
关键词:
- 德拜色散媒质 /
- 遵从发散隐式-时域有限差分 /
- 递归积分 /
- 无条件稳定
Dispersive media refer to a class of natural substances, including living organisms, composite materials, plasma and water, with diverse applications in areas such as biomedicine, microwave sensing, electromagnetic protection, and stealth technology. In the pursuit of investigating the electromagnetic properties of these media, time-domain numerical methods, including finite difference in time domain (FDTD), finite element method, and time domain boundary integral equation method, have been widely utilized. Time-domain numerical methods are preferred to their frequency-domain counterparts owing to their ability to handle nonlinear and wideband problems, as well as various material properties. The FDTD method, in particular, is a highly adaptable, robust, and easy-to-use numerical method that directly solves the Maxwell equations while also simulating the reflection, transmission, and scattering of electromagnetic waves in complex dispersion media. Nonetheless, the traditional FDTD method suffers low computational efficiency arising from the Courant-Friedrichs-Lewy (CFL) stability condition. To solve the problem of low computational efficiency, a new method, the complying divergence implicit finite-difference time-domain (CDI-FDTD) method with a one-step leapfrog scheme, is introduced for lossy Debye dispersive media. The Maxwell equations in the frequency domain form a starting point, and the Fourier transform is utilized to transform the electromagnetic field components from the frequency domain to the time domain. To approximate the integral terms arising from the frequency-to-time domain transformation, a recursive integration (RI) method is employed. Subsequently, the time-domain Maxwell equations and auxiliary variables are discretized with a one-step leapfrog implicit scheme. The iterative formula of the RI-CDI-FDTD algorithm for lossy Debye dispersive media is then derived. The RI-CDI-FDTD method does not change the formulas of the traditional CDI-FDTD method while only requiring to add auxiliary variables for updating field components to the dispersive medium region. The numerical implementation is straightforward, and the electromagnetic modeling is flexible. Moreover, the unconditional stability of the RI-CDI-FDTD algorithm is proven by using the von Neumann method. Finally, some numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed method. In conclusion, our work contributes a crucial numerical simulation tool to accurately modeling complex dispersive media while providing a systemic stability analysis method for time-domain numerical methods.-
Keywords:
- Debye dispersive medium /
- complying divergence implicit finite-difference time-domain method /
- recursive integration method /
- unconditionally stable
[1] Cheng X, Shao W, Wang K, Wang B Z 2019 IEEE Antennas Wirel. Propag. Lett. 18 1931Google Scholar
[2] Chakarothai J 2018 IEEE Trans. Antennas Propag. 67 6076Google Scholar
[3] Fang Y, Liu J F, Jiao Z H, Bai G H, Xi X L 2018 IEEE Trans. Plasma Sci. 47 173Google Scholar
[4] Tian H M, He S M, Wang M Y, Li G P, Yu M X, Zhang S T, Xu J 2021 IEEE Antennas Wirel. Propag. Lett. 20 2392Google Scholar
[5] 陈碧云, 张业荣, 王磊, 王芳芳 2016 物理学报 65 144101Google Scholar
Chen B Y, Zhang Y R, Wang L, Wang F F 2016 Acta Phys. Sin. 65 144101Google Scholar
[6] 陈伟, 黄海, 杨利霞, 薄勇, 黄志祥 2023 物理学报 72 060201Google Scholar
Chen W, Huang H, Yang L X, Bo Y, Huang Z X 2023 Acta Phys. Sin. 72 060201Google Scholar
[7] 杨利霞, 刘超, 李清亮, 闫玉波 2022 物理学报 71 064101Google Scholar
Yang L X, Liu C, Li Q L, Yan Y B 2022 Acta Phys. Sin. 71 064101Google Scholar
[8] 葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259—294页
Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) pp259–294 (in Chinese)
[9] 陈娟, 王建国, 许宁 2016 弱条件稳定时域有限差分方法 (北京: 科学出版社) 第28—30页
Chen J, Wang J G, Xu N 2016 Weakly Conditionally Stable Finite-Difference Time-Domain Method (Beijing: Science Press) pp28–30 (in Chinese)
[10] Shemshadi A 2018 IEEE Trans. Plasma Sci. 47 647Google Scholar
[11] Gong Z, Yang S 2021 IEEE Trans. Magn. 57 1Google Scholar
[12] Lasisi S O, Benson T M, Greenaway M T, Gradoni G, Cools K 2022 IEEE J. Multiscale Multiphys. Comput. Techn. 7 161Google Scholar
[13] Pereda A, Vielva L A, Vegas A, Prieto A 2001 IEEE Trans. Microw. Theory Tech. 49 377Google Scholar
[14] Park J, Jung K Y 2021 Opt. Express 29 21639Google Scholar
[15] 牟春晖, 陈娟, 范凯航, 鲁艺 2022 物理学报 71 184101Google Scholar
Mou C H, Chen J, Fan K H, Lu Y 2022 Acta Phys. Sin. 71 184101Google Scholar
[16] Feng N, Zhang Y, Zhu J, Zeng Q, Wang G P 2021 IEEE Access 9 18550Google Scholar
[17] Liu H, Zhao X, Wang X H, Yang S, Chen Z 2022 IEEE Trans. Electromagn. Compat. 64 827Google Scholar
[18] Liu S, Zou B, Zhang L M, Ren S L 2020 IEEE Antennas Wirel. Propag. Lett. 19 816Google Scholar
[19] Fang M, Feng J, Xie G D, Lu Y C, Zhang X Q, Han J G, Huang Z X, Wu X L 2023 IEEE Microw. Wirel. Compon. Lett. 33 375Google Scholar
[20] Gan T H, Tan E L 2012 IEEE Trans. Antennas Propag. 60 5801Google Scholar
[21] Tan E L 2021 IEEE Antennas Wirel. Propag. Lett. 20 853Google Scholar
[22] Tan E L 2022 Axioms 11 23Google Scholar
[23] Xie G D, Fang M, Huang Z X, Wu X L, Ren X G, Feng N X 2023 IEEE Trans. Microw. Theory Tech. 71 1009Google Scholar
[24] Kurnaz O, Aksoy S 2022 IEEE Trans. Electromagn. Compat. 64 2149Google Scholar
[25] Kim Y J, Jung K Y 2021 IEEE Trans. Antennas Propag. 69 6600Google Scholar
[26] Zhang Y, Feng N, Zhu J, Xie G, Yang L, Huang Z 2022 Remote Sens. 14 2397Google Scholar
[27] Giannopoulos A 2018 IEEE Trans. Antennas Propag. 66 2987Google Scholar
[28] Xie G D, Fang M, Huang Z X, Ren X G, Wu X L 2022 Comput. Phys. Commun. 280 108463Google Scholar
[29] Liu S, Tan E L, Zou B, Zhang L M 2023 IEEE Trans. Microw. Theory Tech. 71 522Google Scholar
[30] Tekbas K, Costen F, Bérenger J P, Himeno R, Yokota H 2016 IEEE Trans. Antennas Propag. 65 278Google Scholar
-
图 3 解析方法、传统FDTD方法(CFLN = 1)及RI-CDI-FDTD方法(CFLN = 3, 5, 8)计算所得色散介质板的传输和反射系数 (a) 传输系数; (b) 反射系数
Fig. 3. Transmission and reflection coefficients of a dispersive medium slab calculated by using analytical method, traditional FDTD method (CFLN=1), and RI-CDI-FDTD method (CFLN = 3, 5, 8): (a) Transmission coefficient; (b) reflection coefficient.
图 5 解析方法、传统FDTD方法(CFLN = 1)及RI-CDI-FDTD方法(CFLN = 3, 5, 8)计算所得探测的时域波形变化曲线 (a) A点; (b) B点
Fig. 5. Time-domain waveform variation curves of detection points calculated by analytical method, traditional FDTD method (CFLN = 1), and RI-CDI-FDTD method (CFLN = 3, 5, 8): (a) The detection point A; (b) the detection point B.
表 1 不同生物组织的参数
Table 1. Parameters of different biological tissues.
生物组织 σ/(S·m–1) εs ε∞ τ/ps CPU time/s 皮肤 0.540 47.9 29.9 43.6 72.7038 脂肪 0.037 5.53 4.00 23.6 89.7149 骨头 0.104 14.2 7.36 34.1 29.9594 表 2 两种方法的仿真时间比较
Table 2. Comparison of simulation time between two methods.
方法 时间/s RI-FDTD 621.5737 RI-CDI-FDTD (CFLN = 3) 562.0881 RI-CDI-FDTD (CFLN = 5) 352.1662 RI-CDI-FDTD (CFLN = 8) 219.5618 -
[1] Cheng X, Shao W, Wang K, Wang B Z 2019 IEEE Antennas Wirel. Propag. Lett. 18 1931Google Scholar
[2] Chakarothai J 2018 IEEE Trans. Antennas Propag. 67 6076Google Scholar
[3] Fang Y, Liu J F, Jiao Z H, Bai G H, Xi X L 2018 IEEE Trans. Plasma Sci. 47 173Google Scholar
[4] Tian H M, He S M, Wang M Y, Li G P, Yu M X, Zhang S T, Xu J 2021 IEEE Antennas Wirel. Propag. Lett. 20 2392Google Scholar
[5] 陈碧云, 张业荣, 王磊, 王芳芳 2016 物理学报 65 144101Google Scholar
Chen B Y, Zhang Y R, Wang L, Wang F F 2016 Acta Phys. Sin. 65 144101Google Scholar
[6] 陈伟, 黄海, 杨利霞, 薄勇, 黄志祥 2023 物理学报 72 060201Google Scholar
Chen W, Huang H, Yang L X, Bo Y, Huang Z X 2023 Acta Phys. Sin. 72 060201Google Scholar
[7] 杨利霞, 刘超, 李清亮, 闫玉波 2022 物理学报 71 064101Google Scholar
Yang L X, Liu C, Li Q L, Yan Y B 2022 Acta Phys. Sin. 71 064101Google Scholar
[8] 葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259—294页
Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) pp259–294 (in Chinese)
[9] 陈娟, 王建国, 许宁 2016 弱条件稳定时域有限差分方法 (北京: 科学出版社) 第28—30页
Chen J, Wang J G, Xu N 2016 Weakly Conditionally Stable Finite-Difference Time-Domain Method (Beijing: Science Press) pp28–30 (in Chinese)
[10] Shemshadi A 2018 IEEE Trans. Plasma Sci. 47 647Google Scholar
[11] Gong Z, Yang S 2021 IEEE Trans. Magn. 57 1Google Scholar
[12] Lasisi S O, Benson T M, Greenaway M T, Gradoni G, Cools K 2022 IEEE J. Multiscale Multiphys. Comput. Techn. 7 161Google Scholar
[13] Pereda A, Vielva L A, Vegas A, Prieto A 2001 IEEE Trans. Microw. Theory Tech. 49 377Google Scholar
[14] Park J, Jung K Y 2021 Opt. Express 29 21639Google Scholar
[15] 牟春晖, 陈娟, 范凯航, 鲁艺 2022 物理学报 71 184101Google Scholar
Mou C H, Chen J, Fan K H, Lu Y 2022 Acta Phys. Sin. 71 184101Google Scholar
[16] Feng N, Zhang Y, Zhu J, Zeng Q, Wang G P 2021 IEEE Access 9 18550Google Scholar
[17] Liu H, Zhao X, Wang X H, Yang S, Chen Z 2022 IEEE Trans. Electromagn. Compat. 64 827Google Scholar
[18] Liu S, Zou B, Zhang L M, Ren S L 2020 IEEE Antennas Wirel. Propag. Lett. 19 816Google Scholar
[19] Fang M, Feng J, Xie G D, Lu Y C, Zhang X Q, Han J G, Huang Z X, Wu X L 2023 IEEE Microw. Wirel. Compon. Lett. 33 375Google Scholar
[20] Gan T H, Tan E L 2012 IEEE Trans. Antennas Propag. 60 5801Google Scholar
[21] Tan E L 2021 IEEE Antennas Wirel. Propag. Lett. 20 853Google Scholar
[22] Tan E L 2022 Axioms 11 23Google Scholar
[23] Xie G D, Fang M, Huang Z X, Wu X L, Ren X G, Feng N X 2023 IEEE Trans. Microw. Theory Tech. 71 1009Google Scholar
[24] Kurnaz O, Aksoy S 2022 IEEE Trans. Electromagn. Compat. 64 2149Google Scholar
[25] Kim Y J, Jung K Y 2021 IEEE Trans. Antennas Propag. 69 6600Google Scholar
[26] Zhang Y, Feng N, Zhu J, Xie G, Yang L, Huang Z 2022 Remote Sens. 14 2397Google Scholar
[27] Giannopoulos A 2018 IEEE Trans. Antennas Propag. 66 2987Google Scholar
[28] Xie G D, Fang M, Huang Z X, Ren X G, Wu X L 2022 Comput. Phys. Commun. 280 108463Google Scholar
[29] Liu S, Tan E L, Zou B, Zhang L M 2023 IEEE Trans. Microw. Theory Tech. 71 522Google Scholar
[30] Tekbas K, Costen F, Bérenger J P, Himeno R, Yokota H 2016 IEEE Trans. Antennas Propag. 65 278Google Scholar
计量
- 文章访问数: 2511
- PDF下载量: 68
- 被引次数: 0