搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含碳三原子分子结构与电子亲和能的计算

单石敏 连艺 徐海峰 闫冰

引用本文:
Citation:

含碳三原子分子结构与电子亲和能的计算

单石敏, 连艺, 徐海峰, 闫冰

Computational study on structure and electron affinities of carbon-containing triatomic molecules

Shan Shi-Min, Lian Yi, Xu Hai-Feng, Yan Bing
PDF
HTML
导出引用
  • 本文分别采用单、双和微扰处理三激发耦合簇方法与自旋非限制的开壳层耦合簇方法对CO2, OCS, CS2及其对应阴离子${\text{CO}}_2^ - $, ${\mathrm{OC}}{{\mathrm{S}}^ - }$, $ {\mathrm{C}}{\text{S}}_2^ - $进行高精度的从头算研究. 我们计算了这些分子在一系列相关一致基组aug-cc-pV(X+d)Z (X = T, Q, 5) 以及完全基组极限下的基态平衡几何结构, 并研究了芯-价电子相关与标量相对论效应的影响, 计算结果与已有文献报道结果吻合较好. 基于计算的几何结构, 获得了中性分子CO2, OCS, CS2的绝热电子亲和能, 系统考察了不同基组以及零点能修正对这些分子电子亲和能的影响, 给出了考虑各种修正下3种分子准确的电子亲和能. 本文将丰富含碳三原子分子的光谱常数和电子亲和能等分子参数的信息, 可为实验光谱研究提供重要参考.
    The accurate measurement and calculation of molecular electron affinity has been a hot topic. The existing theoretical study does not consider the effects of different basic sets, or various correlation effects or zero point energy correction. In addition, there are some deviations of calculation results from experimental measurements. Therefore, we conduct a high-level ab initio study on the electron affinities of CO2, OCS, CS2 and their corresponding anions $ {\text{CO}}_{2}^{{ - }} $, OCS, $ {\text{CS}}_{2}^{{ - }} $ by adopting the coupled cluster with singles and doubles (triples) (CCSD(T)), spin-unrestricted open-shell coupled cluster with singles and doubles (triples) (UCCSD(T)), respectively. The equilibrium geometries of the ground states of these molecules are calculated under a series of extended correlation consistent basis sets aug-cc-pV (X+d)Z (X = T, Q, 5) and complete basis set extrapolation (CBS) limit. The effects of core-valence (CV) electron correlation and scalar relativistic (SR) on equilibrium geometry of the ground state are studied, and our results are compared with previous experimental observations and theoretical data. Our calculations are in good agreement with the previous results. It is found that the calculations of equilibrium geometries of these molecules tend to converge. It is noted that the scalar relativistic effect has little influence on the equilibrium structure of the neutral molecule, but it has more significant influence on the bond angle of $ {\text{CS}}_{2}^{{ - }} $.With the increase of atomic number, the core-valence correlation effect exerts a more remarkable influence on the equilibrium structures of ground states of CS2 and $ {\text{CS}}_{2}^{{ - }} $ molecules except for RC-S of OCS. Based on accurate structures, the adiabatic energy values of neutral molecules CO2, OCS, CS2 by CCSD(T) method and those of $ {\text{CO}}_{2}^{{ - }} $, OCS, $ {\text{CS}}_{2}^{{ - }} $ by using UCCSD(T) and spin-restricted open-shell coupled cluster with singles and doubles (triples) (RCCSD(T)) are calculated, respectively. And finally, the adiabatic electron affinities (EAs) of the neutral molecules CO2, OCS, CS2 are obtained. The effects of different basis sets, CBS, correlation effects and zero-point energy correction on the EA values of these molecules are investigated. It is found that both the scalar relativistic effect and the core-valence correlation effect affect the EAs of neutral molecules, and the core-valence correlation effect has a more significant effect on the EA value. The results show that the correlation effect has more significant influence on the adiabatic EA than the equilibrium structure of the ground state of neutral molecules. Based on the CBS+ΔCV+ΔDK+ΔZPE calculation, accurate EA information is acquired. Our results of EA values are within the experimental error. This work will enrich the information about spectral constants and electron affinities of carbon-containing triatomic molecules, and provide an important reference for experimental spectral analysis.
      通信作者: 徐海峰, xuhf@jlu.edu.cn ; 闫冰, yanbing@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874177, 12174148, 12274178)和山西省基础研究计划(批准号: 202203021212116)资助的课题.
      Corresponding author: Xu Hai-Feng, xuhf@jlu.edu.cn ; Yan Bing, yanbing@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874177, 12174148, 12274178) and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021212116).
    [1]

    Rienstra K J C, Tschumper G S, Schaefer H F, Nandi S, Ellison G B 2002 Chem. Rev. 102 231Google Scholar

    [2]

    Cahen D, Kahn A 2003 Adv. Mater. 15 271Google Scholar

    [3]

    Ru P B, Bi E, Zhang Y, Wang Y B, Kong W Y, Tang W T, Zhang P, Wu Y Z, Chen W, Yang X D, Chen H, Han L Y 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [4]

    Compton R N, Reinhardt P W, Cooper C D 1975 J. Chem. Phys. 63 3821Google Scholar

    [5]

    Holroyd R A, Cangwer T E, Allen A O 1975 Chem. Phys. Lett. 31 520Google Scholar

    [6]

    Surber E, Sanov A 2002 J. Chem. Phys. 116 5921Google Scholar

    [7]

    Chen E C M, Wentworth W E 1983 J. Phys. Chem. 87 45Google Scholar

    [8]

    Hughes B M, Lifshitzt C, Tiernan T O 1973 J. Chem. Phys. 59 3162Google Scholar

    [9]

    Oakes J M, Barney Ellison G 1986 Tetrahedron. 42 6263Google Scholar

    [10]

    Schiedt J, Weinkauf R 1997 Chem. Phys. Lett. 274 18Google Scholar

    [11]

    Misaizu F, Tsunoyama H, Yasumura Y, Ohshimo K, Ohno K 2004 Chem. Phys. Lett. 389 241Google Scholar

    [12]

    Cavanagh S J, Gibson S T, Lewis B R 2012 J. Chem. Phys. 137 144304Google Scholar

    [13]

    Herzberg G 1966 Molecular Spectra & Molecular Structure III (Polyatomic Molecules) (New York: Van Nostrand Reinhold) p145

    [14]

    Hartman K O, Hisatsune I C 1966 J. Chem. Phys. 44 1913Google Scholar

    [15]

    Ovenall D W, Whiffen D H 1961 Mol. Phys. 4 135Google Scholar

    [16]

    Lahaye J G, Vandenhaute R, Fayt A 1987 J. Mol. Spectrosc. 123 48Google Scholar

    [17]

    Suzuki I 1975 Bull. Chem. Soc. Jpn. 48 1685Google Scholar

    [18]

    Bennett J E, Mile B, Thomas A 1967 Trans. Faraday Soc. 63 262Google Scholar

    [19]

    Yu D, Rauk A, Armstrong D A 1992 J. Phys. Chem. 96 6031Google Scholar

    [20]

    Gutsev G L, Bartlett R J, Compton R N 1998 J. Chem. Phys. 108 6756Google Scholar

    [21]

    Barsotti S, Sommerfeld T, Ruf M W, Hotop H 2004 Int. J. Massspectrom. 233 181

    [22]

    Pacansky J, Wahlgren U, Bagus P S 1975 J. Chem. Phys. 62 2740Google Scholar

    [23]

    Yoshioka Y, Schaefer H F, Jordan K D 1981 J. Chem. Phys. 75 1040Google Scholar

    [24]

    Surber E, Ananthavel S P, Sanov A 2002 J. Chem. Phys. 116 1920Google Scholar

    [25]

    Joachim W H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2 242Google Scholar

    [26]

    Bartlett R J, Watts J D, Kucharski S A, Noga J 1990 Chem. Phys. Lett. 165 513Google Scholar

    [27]

    Dunning T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244Google Scholar

    [28]

    Fellera D, Peterson K A, Daniel C T 2006 J. Chem. Phys. 124 054107Google Scholar

    [29]

    Fellera D, Peterson K A 2007 J. Chem. Phys. 126 114105Google Scholar

    [30]

    Peterson K A, Woon D E, Dunning T H 1994 J. Chem. Phys. 100 7410Google Scholar

    [31]

    Dunning T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [32]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037Google Scholar

    [33]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

  • 图 1  (a) CO2基态分子轨道图; (b) OCS基态分子轨道图; (c) CS2基态分子轨道图

    Fig. 1.  (a) Molecular orbital of the ground state of CO2; (b) molecular orbital of the ground state of OCS; (c) molecular orbital of the ground state of CS2.

    图 2  (a) $ {\text{CO}}_2^ - $基态分子轨道图; (b) $ {\mathrm{OC{S}}^ - } $基态分子轨道图; (c) $ {\mathrm{C}}{\text{S}}_2^ - $基态分子轨道图

    Fig. 2.  (a) Molecular orbital of the ground state of $ {\text{CO}}_2^ - $; (b) molecular orbital of the ground state of $ {\mathrm{OC{S}}^ - } $; (c) molecular orbital of the ground state of $ {\mathrm{C}}{\text{S}}_2^ - $.

    表 1  CO2, OCS, CS2及其阴离子在不同基组与CBS极限下基态的键长与键角

    Table 1.  Equilibrium bond distance and bond angle of the ground state of CO2, OCS, CS2 and the corresponding anions as a function of different basis sets and CBS limit.

    AV(T+d)Z AV(Q+d)Z AV(5+d)Z CBS
    CO2 RC-O 1.167 1.163 1.162 1.162
    ${\text{CO}}_2^ - $ RC-O 1.237 1.232 1.231 1.230
    ∠OCO/(°) 137.6 137.7 137.8 137.9
    OCS RC-O 1.163 1.159 1.158 1.158
    RC-S 1.571 1.567 1.566 1.565
    ${\mathrm{OCS}}^{ - } $ RC-O 1.214 1.210 1.209 1.208
    RC-S 1.710 1.705 1.703 1.701
    ∠OCS/(°) 136.5 136.4 136.5 136.5
    CS2 RC-S 1.562 1.558 1.557 1.555
    $ {\text{CS}}_{2}^{{ - }} $ RC-S 1.641 1.636 1.634 1.633
    ∠SCS/(°) 143.3 143.5 143.6 143.7
    下载: 导出CSV

    表 2  CO2, OCS, CS2及其应阴离子在不同关联效应下基态的键长与键角

    Table 2.  Equilibrium bond distance and bond angle of the ground state of CO2, OCS, CS2 and the corresponding anions as a function of different correlation effect.

    本工作计算结果 其他计算结果 实验结果
    CBS ΔCV ΔDK Total
    CO2 R C-O 1.162 –0.002 0 1.160 1.143 [19]/1.179 [19]/1.1614 [20]/1.164 [20]/1.167 [21] 1.162 [13]
    $ {\text{CO}}_{2}^{{ - }} $ R C-O 1.230 –0.002 0 1.228 1.225 [19]/1.256 [19]/1.230 [20]/1.233 [20]/1.237 [21] 1.25 [14]
    ∠OCO/(°) 137.9 0.1 0 138.0 135 [19]/134.2 [19]/137.9 [20]/137.7 [20]/136.7 [21] 134 [15]
    OCS R C-O 1.158 –0.002 0 1.156 1.158 [20]/1.161 [20])/1.163 [21] 1.156 [16]
    R C-S 1.565 –0.003 0 1.562 1.566 [20]/1.563 [20]/1.575 [21] 1.561 [16]
    ${\mathrm{OCS}}^{ - } $ R C-O 1.208 –0.002 0 1.206 1.208 [20]/1.209 [20]/1.213 [21]
    R C-S 1.701 –0.005 0 1.696 1.704 [20]/1.707 [20]/1.716 [21]
    ∠OCS/(°) 136.5 0.1 0 136.6 136.5 [20]/136.3 [20]/136.2 [21]
    CS2 R C-S 1.555 –0.003 0 1.552 1.558 [20]/1.557 [20]/1.565 [21] 1.556 [17]
    $ {\text{CS}}_{2}^{{ - }} $ R C-S 1.633 –0.004 0 1.629 1.635 [20]/1.630 [20]/1.646 [21]
    ∠SCS/(°) 143.7 0.2 –0.1 143.8 144 [20]/145.2 [20]/142.7 [21] 141 [18]
    下载: 导出CSV

    表 3  CO2分子的绝热电子亲和能以及与以往理论和实验数据对比

    Table 3.  Adiabatic electron affinity of CO2 compared to previous theoretical and experimental data.

    绝热电子亲和能/eV
    UCCSD(T) RCCSD(T)
    AV(T+d)Z –0.631 –0.654
    AV(Q+d)Z –0.630 –0.653
    AV(5+d)Z –0.624 –0.648
    Q5-CBS –0.616 –0.640
    TQ5-CBS –0.619 –0.643
    ΔCV –0.012
    ΔDK –0.003
    ΔZPE 0.090
    Total –0.541a)/–0.544b) –0.565a)/–0.568b)
    Experiment –0.6 ± 0.2 [4]/–0.44±0.2 [5]
    Calculation –0.36 [22]/–0.669 [20]/–0.544 [21]
    注: a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
    b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
    下载: 导出CSV

    表 5  CS2分子的电子亲和能以及与以往理论和实验数据对比

    Table 5.  Adiabatic electron affinity of CS2 compared to previous theoretical and experimental data.

    绝热电子亲和能/eV
    UCCSD(T) RCCSD(T)
    AV(T+d)Z 0.359 0.337
    AV(Q+d)Z 0.399 0.377
    AV(5+d)Z 0.407 0.384
    Q5-CBS 0.417 0.394
    TQ5-CBS 0.412 0.389
    ΔCV –0.013
    ΔDK –0.009
    ΔZPE 0.053
    Total 0.448 a)/0.443 b) 0.425 a)/0.420 b)
    Experiment 0.6 ± 0.1 [7]/≤0.8 [10]/0.58±0.05 [11]/
    0.5525(13) [12]
    Calculation 0.406 [20]/0.382 [20]/0.457 [21]/0.54 [11]
    注: a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
    b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
    下载: 导出CSV

    表 4  OCS分子的电子亲和能以及与以往理论和实验数据对比

    Table 4.  Adiabatic electron affinity of OCS compared to previous theoretical and experimental data.

    绝热电子亲和能/eV
    UCCSD(T) RCCSD(T)
    AV(T+d)Z –0.098 –0.119
    AV(Q+d)Z –0.073 –0.095
    AV(5+d)Z –0.069 –0.091
    Q5-CBS –0.062 –0.0839
    TQ5-CBS –0.066 –0.0876
    ΔCV –0.016
    ΔDK –0.004
    ΔZPE 0.070
    Total –0.012 a)/–0.016 b) –0.034 a)/–0.038 b)
    Experiment 0.46±0.2 [4]/–0.04 [6]
    Calculation –0.007 [21]/–0.059±0.061 [24]
    注: a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
    b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
    下载: 导出CSV
  • [1]

    Rienstra K J C, Tschumper G S, Schaefer H F, Nandi S, Ellison G B 2002 Chem. Rev. 102 231Google Scholar

    [2]

    Cahen D, Kahn A 2003 Adv. Mater. 15 271Google Scholar

    [3]

    Ru P B, Bi E, Zhang Y, Wang Y B, Kong W Y, Tang W T, Zhang P, Wu Y Z, Chen W, Yang X D, Chen H, Han L Y 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [4]

    Compton R N, Reinhardt P W, Cooper C D 1975 J. Chem. Phys. 63 3821Google Scholar

    [5]

    Holroyd R A, Cangwer T E, Allen A O 1975 Chem. Phys. Lett. 31 520Google Scholar

    [6]

    Surber E, Sanov A 2002 J. Chem. Phys. 116 5921Google Scholar

    [7]

    Chen E C M, Wentworth W E 1983 J. Phys. Chem. 87 45Google Scholar

    [8]

    Hughes B M, Lifshitzt C, Tiernan T O 1973 J. Chem. Phys. 59 3162Google Scholar

    [9]

    Oakes J M, Barney Ellison G 1986 Tetrahedron. 42 6263Google Scholar

    [10]

    Schiedt J, Weinkauf R 1997 Chem. Phys. Lett. 274 18Google Scholar

    [11]

    Misaizu F, Tsunoyama H, Yasumura Y, Ohshimo K, Ohno K 2004 Chem. Phys. Lett. 389 241Google Scholar

    [12]

    Cavanagh S J, Gibson S T, Lewis B R 2012 J. Chem. Phys. 137 144304Google Scholar

    [13]

    Herzberg G 1966 Molecular Spectra & Molecular Structure III (Polyatomic Molecules) (New York: Van Nostrand Reinhold) p145

    [14]

    Hartman K O, Hisatsune I C 1966 J. Chem. Phys. 44 1913Google Scholar

    [15]

    Ovenall D W, Whiffen D H 1961 Mol. Phys. 4 135Google Scholar

    [16]

    Lahaye J G, Vandenhaute R, Fayt A 1987 J. Mol. Spectrosc. 123 48Google Scholar

    [17]

    Suzuki I 1975 Bull. Chem. Soc. Jpn. 48 1685Google Scholar

    [18]

    Bennett J E, Mile B, Thomas A 1967 Trans. Faraday Soc. 63 262Google Scholar

    [19]

    Yu D, Rauk A, Armstrong D A 1992 J. Phys. Chem. 96 6031Google Scholar

    [20]

    Gutsev G L, Bartlett R J, Compton R N 1998 J. Chem. Phys. 108 6756Google Scholar

    [21]

    Barsotti S, Sommerfeld T, Ruf M W, Hotop H 2004 Int. J. Massspectrom. 233 181

    [22]

    Pacansky J, Wahlgren U, Bagus P S 1975 J. Chem. Phys. 62 2740Google Scholar

    [23]

    Yoshioka Y, Schaefer H F, Jordan K D 1981 J. Chem. Phys. 75 1040Google Scholar

    [24]

    Surber E, Ananthavel S P, Sanov A 2002 J. Chem. Phys. 116 1920Google Scholar

    [25]

    Joachim W H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2 242Google Scholar

    [26]

    Bartlett R J, Watts J D, Kucharski S A, Noga J 1990 Chem. Phys. Lett. 165 513Google Scholar

    [27]

    Dunning T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244Google Scholar

    [28]

    Fellera D, Peterson K A, Daniel C T 2006 J. Chem. Phys. 124 054107Google Scholar

    [29]

    Fellera D, Peterson K A 2007 J. Chem. Phys. 126 114105Google Scholar

    [30]

    Peterson K A, Woon D E, Dunning T H 1994 J. Chem. Phys. 100 7410Google Scholar

    [31]

    Dunning T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [32]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037Google Scholar

    [33]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

  • [1] 陈子俊, 李慧芳, 谢圳明, 张勇航, 郑浩, 姜凯乐, 张博, 张家铭, 王怀谦. 稀土掺杂硼团簇REBn-(RE=La,Sc;n=6,8)的几何及电子结构研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240962
    [2] 彭亚晶, 蒋艳雪. 分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响. 物理学报, 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [3] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [4] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [5] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [6] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [7] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质. 物理学报, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [8] 冯海冉, 丁世良. 线性三原子分子振动激发控制的李代数方法. 物理学报, 2008, 57(3): 1626-1631. doi: 10.7498/aps.57.1626
    [9] 任凤竹, 王渊旭, 田付阳, 赵文杰, 罗有华. 密度泛函理论研究ZrnCo(n=1—13)团簇的结构和磁性. 物理学报, 2008, 57(4): 2165-2173. doi: 10.7498/aps.57.2165
    [10] 任凤竹, 罗有华. BenLa (n=1—18) 团簇的结构、电子性质和磁性. 物理学报, 2008, 57(12): 7623-7629. doi: 10.7498/aps.57.7623
    [11] 谌晓洪, 朱正和, 高 涛, 罗顺忠. AlHn(n=1—3)的分子结构和AlH3热力学稳定性. 物理学报, 2006, 55(7): 3420-3432. doi: 10.7498/aps.55.3420
    [12] 毛华平, 王红艳, 朱正和, 唐永建. AunY(n=1—9)掺杂团簇的结构和电子性质研究. 物理学报, 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
    [13] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建. 钇小团簇的结构和电离势的计算. 物理学报, 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [14] 毛华平, 马美仲. Aun(n=2—9)团簇的几何结构和电子特性. 物理学报, 2004, 53(6): 1766-1771. doi: 10.7498/aps.53.1766
    [15] 马健新, 贾 瑜, 梁二军, 王晓春, 王 飞, 胡 行. PbTe(001)表面原子几何结构和电子结构的第一性原理计算. 物理学报, 2003, 52(12): 3155-3161. doi: 10.7498/aps.52.3155
    [16] 沈汉鑫, 朱梓忠, 黄美纯. NiAl的几何与电子结构. 物理学报, 2001, 50(1): 95-98. doi: 10.7498/aps.50.95
    [17] 丁长庚, 杨金龙, 李群祥. 钒团簇的几何和电子结构——从分子到体相性质的演化. 物理学报, 2001, 50(10): 1907-1913. doi: 10.7498/aps.50.1907
    [18] 罗成林, 周延怀, 张 益. 镍原子团簇几何结构的紧束缚方法模拟 . 物理学报, 2000, 49(1): 54-56. doi: 10.7498/aps.49.54
    [19] 郑雨军, 丁世良. 动力学对称群方法对三原子分子高激发振动态的理论研究. 物理学报, 1999, 48(3): 438-445. doi: 10.7498/aps.48.438
    [20] 谢仿卿, 黄明宝, 夏宇兴. ArCN三原子准分子的研究(Ⅰ)——电子态的量子化学计算. 物理学报, 1994, 43(3): 351-355. doi: 10.7498/aps.43.351
计量
  • 文章访问数:  1088
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2024-04-06
  • 上网日期:  2024-04-28
  • 刊出日期:  2024-05-20

/

返回文章
返回