-
极化激元作为光与物质的混合激发可以实现纳米光场的精确调控, 为未来纳米光电器件的小型化和集成化提供了有效的途径. 近年来, 借助散射型扫描近场光学显微镜对多类型极化激元的观测, 多种光学现象背后的物理机制被揭示, 进一步加深了对极化激元物理和相互作用的理解, 也极大地推动了极化激元调控及其应用的研究. 基于此, 本文总结了最新的极化激元近场研究进展. 不同于前期关于二维材料极化激元的综述, 本文不仅涵盖了三维至一维的极化激元材料体系, 还在极化激元纳米光学特性方面增添了各向异性极化激元的最新研究工作, 并且系统总结了极化激元调控的最新进展以及在亚衍射成像和聚焦、纳米结构识别、光调制器和分子检测等方面的相关应用. 最后, 对极化激元未来的研究方向进行了展望.Polaritons, as hybrid excitations of light and matter, are important for miniaturizing the integrated nano-optoelectronic devices due to their capability of manipulating nanolight. Recently, the state-of-the-art nano-imaging technique (e.g. scattering-type scanning near-field optical microscope) has visualized various types of polaritons and revealed the physical mechanism behind them. The nanometer-resolution imaging not only deepens our understanding of fundamentals of polaritons but also promotes the studies of polariton manipulation and applications. In this review paper, we systematically summarize the recent near-field study of polaritons. Rather than other previous reviews focusing on polaritons in two-dimensional materials, our review extends the polaritonic systems to multiple dimensions (3D/2D/1D), at the same time we also collect the latest progress of polaritons in anisotropic systems. Moreover, we show the recent study of polariton manipulation and their corresponding applications, e.g. sub-diffractional imaging, focusing, optical modulator, nanostructure diagnosis and molecular sensing. Our review also look forward to future opportunities of polaritonics and its nanophotonic applications.
-
Keywords:
- near-field imaging /
- polaritons /
- anisotropy /
- manipulation and application
[1] Huang K U N 1951 Nature 167 779
[2] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
[3] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar
[4] Basov D N, Fogler M M, García de Abajo F J 2016 Science 354 aag1992Google Scholar
[5] Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L, Koppens F 2017 Nat. Mater. 16 182Google Scholar
[6] Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Neto A H C, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2014 Science 343 1125Google Scholar
[7] Hu F, Luan Y, Scott M E, Yan J, Mandrus D G, Xu X, Fei Z 2017 Nat. Photon. 11 356Google Scholar
[8] Berkowitz M E, Kim B S Y, Ni G, McLeod A S, Lo C F B, Sun Z, Gu G, Watanabe K, Taniguchi T, Millis A J, Hone J C, Fogler M M, Averitt R D, Basov D N 2021 Nano Lett. 21 308Google Scholar
[9] Costa A T, Vasilevskiy M I, Fernández-Rossier J, Peres N M R 2023 Nano Lett. 23 4510Google Scholar
[10] Wolf E, Nieto-Vesperinas M 1985 J. Opt. Soc. Am. A 2 886
[11] Hillenbrand R, Keilmann F, Hanarp P, Sutherland D S, Aizpurua J 2003 Appl. Phys. Lett. 83 368Google Scholar
[12] Cvitkovic A, Ocelic N, Hillenbrand R 2007 Nano Lett. 7 3177Google Scholar
[13] Hillenbrand R, Keilmann F 2000 Phys. Rev. Lett. 85 3029Google Scholar
[14] Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar
[15] Andryieuski A, Zenin V A, Malureanu R, Volkov V S, Bozhevolnyi S I, Lavrinenko A V 2014 Nano Lett. 14 3925Google Scholar
[16] Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R 2013 Nano Lett. 13 1065Google Scholar
[17] Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar
[18] Deutsch B M, Hillenbrand R, Novotny L 2008 Opt. Express 16 2 494
[19] Taubner T, Hillenbrand R, Keilmann F 2003 J. Micro. 210 311Google Scholar
[20] 段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar
Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar
[21] Gramotnev D K, Bozhevolnyi S I 2014 Nat. Photon. 8 13Google Scholar
[22] Gucciardi P G, Bachelier G, Allegrini M 2006 J. Appl. Phys. 99 124309Google Scholar
[23] Knoll B, Keilmann F 2000 Opt. Commun. 182 321Google Scholar
[24] Ocelic N, Huber A, Hillenbrand R 2006 Appl. Phys. Lett. 89 101124Google Scholar
[25] Moreno C, Alda J, Kinzel E, Boreman G 2017 Appl. Opt. 56 1037Google Scholar
[26] HillenbRand R, Knoll B, Keilmann F 2001 J. Micro. 202 77Google Scholar
[27] Zenhausern F, Martin Y, Wickramasinghe H K 1995 Science 269 1083Google Scholar
[28] Richards D, Zayats A, Keilmann F, Hillenbrand R 2004 Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362 787
[29] Cvitkovic A, Ocelic N, Hillenbrand R 2007 Opt. Express 15 8550Google Scholar
[30] Amarie S, Keilmann F 2011 Phys. Rev. B 83 045404Google Scholar
[31] Chen X Z, Hu D B, Mescall R, You G J, Basov D N, Dai Q, Liu M K 2019 Adv. Mater. 31 1804774Google Scholar
[32] Jiang B Y, Zhang L M, Castro Neto A H, Basov D N, Fogler M M 2016 J. Appl. Phys. 119 054305Google Scholar
[33] Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N 2011 Nano Lett. 11 4701Google Scholar
[34] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar
[35] Dai S, Ma Q, Yang Y, Rosenfeld J, Goldflam M D, McLeod A, Sun Z, Andersen T I, Fei Z, Liu M, Shao Y, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2017 Nano Lett. 17 5285Google Scholar
[36] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar
[37] Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369Google Scholar
[38] Fei Z, Iwinski E G, Ni G X, Zhang L M, Bao W, Rodin A S, Lee Y, Wagner M, Liu M K, Dai S, Goldflam M D, Thiemens M, Keilmann F, Lau C N, Castro-Neto A H, Fogler M M, Basov D N 2015 Nano Lett. 15 4973Google Scholar
[39] Dong Y, Xiong L, Phinney I Y, Sun Z, Jing R, McLeod A S, Zhang S, Liu S, Ruta F L, Gao H, Dong Z, Pan R, Edgar J H, Jarillo-Herrero P, Levitov L S, Millis A J, Fogler M M, Bandurin D A, Basov D N 2021 Nature 594 513Google Scholar
[40] Zhao W, Zhao S, Li H, Wang S, Wang S, Utama M I B, Kahn S, Jiang Y, Xiao X, Yoo S, Watanabe K, Taniguchi T, Zettl A, Wang F 2021 Nature 594 517Google Scholar
[41] Kim B S Y, Sternbach A J, Choi M S, Sun Z, Ruta F L, Shao Y, McLeod A S, Xiong L, Dong Y, Chung T S, Rajendran A, Liu S, Nipane A, Chae S H, Zangiabadi A, Xu X, Millis A J, Schuck P J, Dean C R, Hone J C, Basov D N 2023 Nat. Mater. 22 838Google Scholar
[42] Zhou Y X, Chen R K, Wang J Y, Huang Y S, Li M, Xing Y J, Duan J H, Chen J J, Farrell J D, Xu H Q, Chen J N 2018 Adv. Mater. 30 1802551Google Scholar
[43] Xue M F, Li M, Huang Y S, Chen R K, Li YL, Wang J Y, Xing Y J, Chen J J, Yan H Q, Xu H Q, Chen J N 2020 Adv. Mater. 32 2004120Google Scholar
[44] Xue M F, Pan D, Zhao J H, Chen J N 2023 Adv. Mater. 35 2208952Google Scholar
[45] Luttinger J M 2004 J. Math. Phys 4 1154
[46] Voit J 1995 Rep. Pro. Phys. 58 977Google Scholar
[47] Shi Z W, Hong X P, Bechtel H A, Zeng B, Martin M C, Watanabe K, Taniguchi T, Shen Y R, Wang F 2015 Nat. Photon. 9 515Google Scholar
[48] Wang S, Zhao S H, Shi Z W, Wu F Q, Zhao Z Y, Jiang L L, Watanabe K, Taniguchi T, Zettl A, Zhou C W, Wang F 2020 Nat. Mater. 19 986Google Scholar
[49] Wang C, Huang S Y, Xing Q X, Xie Y G, Song C Y, Wang F J, Yan H G 2020 Nat. Commun. 11 1158Google Scholar
[50] Chen S, Leng P L, Konečná A, et al. 2023 Nat. Mater. 22 860Google Scholar
[51] Xu X G, Ghamsari B G, Jiang J H, Gilburd L, Andreev G O, Zhi C, Bando Y, Golberg D, Berini P, Walker G C 2014 Nat. Commun. 5 4782Google Scholar
[52] Li P, Dolado I, Alfaro-Mozaz F J, Nikitin A Y, Casanova F, Hueso L E, Vélez S, Hillenbrand R 2017 Nano Lett. 17 228Google Scholar
[53] Li P, Hu G, Dolado I, Tymchenko M, Qiu C-W, Alfaro-Mozaz F J, Casanova F, Hueso L E, Liu S, Edgar J H, Vélez S, Alu A, Hillenbrand R 2020 Nat. Commun. 11 3663Google Scholar
[54] Li P, Dolado I, Alfaro-Mozaz F J, Casanova F, Hueso L E, Liu S, Edgar J H, Nikitin A Y, Vélez S, Hillenbrand R 2018 Science 359 892Google Scholar
[55] Shi Z W, Bechtel H A, Berweger S, Sun Y, Zeng B, Jin C, Chang H, Martin M C, Raschke M B, Wang F 2015 ACS Photon. 2 790Google Scholar
[56] Dai S, Fang W, Rivera N, Stehle Y, Jiang B-Y, Shen J, Tay R Y, Ciccarino C J, Ma Q, Rodan-Legrain D, Jarillo-Herrero P, Teo E H T, Fogler M M, Narang P, Kong J, Basov D N 2019 Adv. Mater. 31 1806603Google Scholar
[57] Dai S, Tymchenko M, Yang Y, Ma Q, Pita-Vidal M, Watanabe K, Taniguchi T, Jarillo-Herrero P, Fogler M M, Alù A, Basov D N 2018 Adv. Mater. 30 1706358Google Scholar
[58] Ma W, Alonso-González P, Li S, Nikitin A Y, Yuan J, Martín-Sánchez J, Taboada-Gutiérrez J, Amenabar I, Li P, Vélez S, Tollan C, Dai Z, Zhang Y, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R, Bao Q 2018 Nature 562 557Google Scholar
[59] Zheng Z, Xu N, Oscurato S L, Tamagnone M, Sun F, Jiang Y, Ke Y, Chen J, Huang W, Wilson W L, Ambrosio A, Deng S, Chen H 2019 Sci. Adv. 5 eaav8690Google Scholar
[60] Duan J H, Álvarez-Pérez G, Tresguerres-Mata A I F, Taboada-Gutiérrez J, Voronin K V, Bylinkin A, Chang B, Xiao S, Liu S, Edgar J H, Martín J I, Volkov V S, Hillenbrand R, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2021 Nat. Commun. 12 4325Google Scholar
[61] Álvarez-Pérez G, Duan J H, Taboada-Gutiérrez J, Ou Q, Nikulina E, Liu S, Edgar J H, Bao Q, Giannini V, Hillenbrand R, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2022 Sci. Adv. 8 eabp8486Google Scholar
[62] Zhang Q, Ou Q, Si G, Hu G, Dong S, Chen Y, Ni J, Zhao C, Fuhrer M S, Yang Y, Alù A, Hillenbrand R, Qiu C-W 2022 Sci. Adv. 8 eabn9774Google Scholar
[63] Martín-Sánchez J, Duan J H, Taboada-Gutiérrez J, Álvarez-Pérez G, Voronin K V, Prieto I, Ma W, Bao Q, Volkov V S, Hillenbrand R, Nikitin A Y, Alonso-González P 2021 Sci. Adv. 7 eabj0127Google Scholar
[64] Zheng Z B, Jiang J Y, Xu N S, Wang X M, Huang W C, Ke Y L, Zhang S R, Chen H J, Deng S Z 2022 Adv. Mater. 34 2104164Google Scholar
[65] Qu Y P, Chen N, Teng H C, Hu H, Sun J Z, Yu R W, Hu D B, Xue M F, Li C, Wu B, Chen J N, Sun Z P, Liu M K, Liu Y Q, García de Abajo F J, Dai Q 2022 Adv. Mater. 34 2105590Google Scholar
[66] Ma W L, Hu G W, Hu D B, Chen R K, Sun T, Zhang X L, Dai Q, Zeng Y, Alù A, Qiu C W, Li P N 2021 Nature 596 362Google Scholar
[67] Hu G W, Ma W L, Hu D B, Wu J, Zheng C Q, Liu K P, Zhang X D, Ni X, Chen J N, Zhang X L, Dai Q, Caldwell J D, Paarmann A, Alù A, Li P N, Qiu C W 2023 Nat. Nanotechnol. 18 64Google Scholar
[68] Lahneman D J, Qazilbash M M 2021 Phys. Rev. B 104 235433Google Scholar
[69] Koch S W, Kira M, Khitrova G, Gibbs H M 2006 Nat. Mater. 5 523Google Scholar
[70] Fei Z, Scott M E, Gosztola D J, Foley J J, Yan J, Mandrus D G, Wen H, Zhou P, Zhang D W, Sun Y, Guest J R, Gray S K, Bao W, Wiederrecht G P, Xu X 2016 Phys. Rev. B 94 081402Google Scholar
[71] Mrejen M, Yadgarov L, Levanon A, Suchowski H 2019 Sci. Adv. 5 eaat9618Google Scholar
[72] Sternbach A J, Chae S H, Latini S, Rikhter A A, Shao Y, Li B, Rhodes D, Kim B, Schuck P J, Xu X, Zhu X Y, Averitt R D, Hone J, Fogler M M, Rubio A, Basov D N 2021 Science 371 617Google Scholar
[73] Hu F, Luan Y, Speltz J, Zhong D, Liu C H, Yan J, Mandrus D G, Xu X, Fei Z 2019 Phys. Rev. B 100 121301Google Scholar
[74] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421Google Scholar
[75] Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C A M, Zhu S E, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar
[76] Hu G W, Shen J L, Qiu C W, Alù A, Dai S Y 2020 Adv. Opt. Mater. 8 1901393Google Scholar
[77] Hu H, Chen N, Teng H, Yu R W, Qu Y P, Sun J, Xue M F, Hu D, Wu B, Li C, Chen J, Liu M, Sun Z, Liu Y, Li P, Fan S, García de Abajo F J, Dai Q 2022 Nat. Nanotechnol. 17 940Google Scholar
[78] Zeng Y, Ou Q, Liu L, Zheng C, Wang Z, Gong Y, Liang X, Zhang Y, Hu G, Yang Z, Qiu C W, Bao Q, Chen H, Dai Z 2022 Nano Lett. 22 4260Google Scholar
[79] Duan J H, Álvarez-Pérez G, Voronin K V, Prieto I, Taboada-Gutiérrez J, Volkov V S, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2021 Sci. Adv. 7 eabf2690Google Scholar
[80] Zhang Q, Ou Q D, Hu G W, Liu J Y, Dai Z G, Fuhrer M S, Bao Q L, Qiu C W 2021 Nano Lett. 21 3112Google Scholar
[81] Huber M A, Mooshammer F, Plankl M, Viti L, Sandner F, Kastner L Z, Frank T, Fabian J, Vitiello M S, Cocker T L, Huber R 2017 Nat. Nanotechnol. 12 207Google Scholar
[82] Fali A, White S T, Folland T G, He M, Aghamiri N A, Liu S, Edgar J H, Caldwell J D, Haglund R F, Abate Y 2019 Nano Lett. 19 7725Google Scholar
[83] Folland T G, Fali A, White S T, Matson J R, Liu S, Aghamiri N A, Edgar J H, Haglund R F, Abate Y, Caldwell J D 2018 Nat. Commun. 9 4371Google Scholar
[84] Chaudhary K, Tamagnone M, Yin X, Spägele C M, Oscurato S L, Li J, Persch C, Li R, Rubin N A, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Wuttig M, Edgar J H, Ambrosio A, Capasso F 2019 Nat. Commun. 10 4487Google Scholar
[85] Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171Google Scholar
[86] Hu H, Yu R W, Teng H C, Hu D B, Chen N, Qu Y P, Yang X X, Chen X Z, McLeod A S, Alonso-González P, Guo X D, Li C, Yao Z H, Li Z J, Chen J N, Sun Z P, Liu M K, García de Abajo F J, Dai Q 2022 Nat. Commun. 13 1465Google Scholar
[87] Dai S Y, Quan J M, Hu G W, Qiu C W, Tao T H, Li X Q, Alù A 2018 Nano Lett. 19 1009
[88] Zheng Z B, Sun F S, Xu N S, Huang W C, Chen X X, Ke Y L, Zhan R Z, Chen H J, Deng S Z 2022 Adv. Opt. Mater. 10 2102057Google Scholar
[89] Ni G X, McLeod D A, Sun Z Y, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530Google Scholar
[90] Ni G X, McLeod A S, Sun Z Y, Matson J R, Lo C F B, Rhodes D A, Ruta F L, Moore S L, Vitalone R A, Cusco R, Artús L, Xiong L, Dean C R, Hone J C, Millis A J, Fogler M M, Edgar J H, Caldwell J D, Basov D N 2021 Nano Lett. 21 5767Google Scholar
[91] Zhou Y X, Waelchli A, Boselli M, Crassee I, Bercher A, Luo W W, Duan J H, van Mechelen J, van der Marel D, Teyssier J, Willem Rischau C, Korosec L, Gariglio S, Triscone J M, Kuzmenko A B 2023 Nat. Commun. 14 7686Google Scholar
[92] Hu H, Chen N, Teng H, Yu R W, Xue M F, Chen K, Xiao Y, Qu Y P, Hu D, Chen J 2023 Science 379 558Google Scholar
[93] Zhou Z, Song R K, Xu J B, Ni X, Dang Z J, Zhao Z C, Quan J M, Dong S Y, Hu W D, Huang D, Chen K, Wang Z S, Cheng X B, Raschke M B, Alù A, Jiang T 2023 Nano Lett. 23 11252Google Scholar
[94] Huber A J, Ziegler A, Köck T, Hillenbrand R 2009 Nat. Nanotechnol. 4 153Google Scholar
[95] Dapolito M, Tsuneto M, Zheng W, Wehmeier L, Xu S, Chen X, Sun J, Du Z, Shao Y, Jing R, Zhang S, Bercher A, Dong Y, Halbertal D, Ravindran V, Zhou Z, Petrovic M, Gozar A, Carr G L, Li Q, Kuzmenko A B, Fogler M M, Basov D N, Du X, Liu M 2023 Nat. Nanotechnol. 18 1409Google Scholar
[96] Lyu B S, Li H Y, Jiang L L, Shan W F, Hu C, Deng A L, Ying Z, Wang L L, Zhang Y R, Bechtel H A, Martin M C, Taniguchi T, Watanabe K, Luo W D, Wang F, Shi Z W 2019 Nano Lett. 19 1982Google Scholar
[97] Giles A J, Dai S, Vurgaftman I, Hoffman T, Liu S, Lindsay L, Ellis C T, Assefa N, Chatzakis I, Reinecke T L 2018 Nat. Mater. 17 134Google Scholar
[98] Zhao Y Q, Chen J C, Xue M F, Chen R K, Jia S T, Chen J J, Bao L H, Gao H J, Chen J N 2022 Nano Lett. 22 10208Google Scholar
[99] Taboada-Gutiérrez J, Álvarez-Pérez G, Duan J H, Ma W, Crowley K, Prieto I, Bylinkin A, Autore M, Volkova H, Kimura K 2020 Nat. Mater. 19 964Google Scholar
[100] Wu Y J, Ou Q D, Yin Y F, Li Y, Ma W L, Yu W Z, Liu G Y, Cui X Q, Bao X Z, Duan J H, Álvarez-Pérez G, Dai Z G, Shabbir B, Medhekar N, Li X P, Li C M, Alonso-González P, Bao Q L 2020 Nat. Commun. 11 2646Google Scholar
[101] Sunku S, Ni G, Jiang B-Y, Yoo H, Sternbach A, McLeod A, Stauber T, Xiong L, Taniguchi T, Watanabe K 2018 Science 362 1153Google Scholar
[102] Hesp N C, Torre I, Rodan-Legrain D, Novelli P, Cao Y, Carr S, Fang S, Stepanov P, Barcons-Ruiz D, Herzig Sheinfux H 2021 Nat. Phys. 17 1162Google Scholar
[103] Sunku S S, Halbertal D, Stauber T, Chen S, McLeod A S, Rikhter A, Berkowitz M E, Lo C F B, Gonzalez-Acevedo D E, Hone J C, Dean C R, Fogler M M, Basov D N 2021 Nat. Commun. 12 1641Google Scholar
[104] Hesp N C, Torre I, Barcons-Ruiz D, Herzig Sheinfux H, Watanabe K, Taniguchi T, Krishna Kumar R, Koppens F H 2021 Nat. Commun. 12 1640Google Scholar
[105] Duan J H, Capote-Robayna N, Taboada-Gutiérrez J, Álvarez-Pérez G, Prieto I, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2020 Nano Lett. 20 5323Google Scholar
[106] Duan J H, Álvarez-Pérez G, Lanza C, Voronin K, Tresguerres-Mata A, Capote-Robayna N, Álvarez-Cuervo J, Tarazaga Martín-Luengo A, Martín-Sánchez J, Volkov V, Nikitin A, Alonso-González P 2023 Nat. Mater. 22 867Google Scholar
[107] Hu G W, Ou Q D, Si G Y, Wu Y J, Wu J, Dai Z G, Krasnok A, Mazor Y, Zhang Q, Bao Q L, Qiu C W, Alù A 2020 Nature 582 209Google Scholar
[108] Chen M Y, Lin X, Dinh T H, Zheng Z R, Shen J L, Ma Q, Chen H S, Jarillo-Herrero P, Dai S Y 2020 Nat. Mater. 19 1307Google Scholar
[109] Zheng Z B, Sun F S, Huang W C, Jiang J Y, Zhan R Z, Ke Y L, Chen H J, Deng S Z 2020 Nano Lett. 20 5301Google Scholar
[110] Hu C X, Sun T, Zeng Y, Ma W L, Dai Z G, Yang X S, Zhang X L, Li P N 2023 eLight 3 14Google Scholar
[111] Li P N, Lewin M, Kretinin A V, Caldwell J D, Novoselov K S, Taniguchi T, Watanabe K, Gaussmann F, Taubner T 2015 Nat. Commun. 6 7507Google Scholar
[112] Guo X D, Liu R N, Hu D B, Hu H, Wei Z, Wang R, Dai Y Y, Cheng Y, Chen K, Liu K H, Zhang G Y, Zhu X, Sun Z P, Yang X X, Dai Q 2020 Adv. Mater. 32 1907105Google Scholar
[113] Dai S Y, Tymchenko M, Xu Z Q, Tran T T, Yang Y F, Ma Q, Watanabe K, Taniguchi T, Jarillo-Herrero P, Aharonovich I, Basov D N, Tao T H, Alù A 2018 Nano Lett. 18 5205Google Scholar
[114] Bylinkin A, Schnell M, Autore M, Calavalle F, Li P, Taboada-Gutièrrez J, Liu S, Edgar J H, Casanova F, Hueso L E, Alonso-Gonzalez P, Nikitin A Y, Hillenbrand R 2021 Nat. Photon. 15 197Google Scholar
[115] Autore M, Li P, Dolado I, Alfaro-Mozaz F J, Esteban R, Atxabal A, Casanova F, Hueso L E, Alonso-González P, Aizpurua J, Nikitin A Y, Vélez S, Hillenbrand R 2018 Light Sci. Appl. 7 17172
[116] Dai S, Ma Q, Andersen T, Mcleod A S, Fei Z, Liu M K, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Commun. 6 6963Google Scholar
[117] Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M 2010 Nat. Photon. 4 477Google Scholar
[118] Almeida V R, Barrios C A, Panepucci R R, Lipson M 2004 Nature 431 1081Google Scholar
[119] Nozaki K, Matsuo S, Fujii T, Takeda K, Shinya A, Kuramochi E, Notomi M 2019 Nat. Photon. 13 454Google Scholar
[120] Jahani S, Kim S, Atkinson J, Wirth J C, Kalhor F, Noman A A, Newman W D, Shekhar P, Han K, Van V, DeCorby R G, Chrostowski L, Qi M, Jacob Z 2018 Nat. Commun. 9 1893Google Scholar
-
图 1 石墨烯等离极化激元的实空间成像 (a)碳化硅衬底上石墨烯等离极化激元的近场光学成像[34]; (b)金属天线激发石墨烯等离极化激元波前成像[37]; (c)不同电流下石墨烯等离极化激元近场光学图像(上)及其相应的线轮廓(下)[40]; (d)不同数量二硒化钨间隔层分离的氧化钨/石墨烯异质结纳米红外光学图像[41]
Fig. 1. Real-space imaging of graphene plasmons: (a) Near-field imaging of graphene plasmons on SiC substrate[34]; (b) wavefront mapping of graphene plasmons launched by metal antenna[37]; (c) near-field images of the propagating graphene plasmons under different driving currents (top panel) and the corresponding line profiles (bottom panel) [40]; (d) nano-infrared images of WOx/graphene heterostructures with a varied number of tungsten diselenide (WSe2) spacer layers[41].
图 2 一维纳米结构中的等离极化激元 (a)砷化铟纳米线的原子力显微镜图像(上)和对应的红外纳米光学成像图(下)[42], 入射光频率为901 cm–1, 标尺为1; (b)锑化铟纳米线的超快近场光学图像, 泵浦光和探测光的延迟从0—10 ps[44], 标尺为500 nm; (c)不同时间延迟下砷化铟孪晶超晶格纳米线的红外光谱测量结果[43]; (d)金属型(M1和M2)和半导体型(S1和S2)碳纳米管的近场光学图像, 背栅电压数值分别为–20 V (上)和0 V (下)[48]
Fig. 2. Plasmon polaritons in one-dimensional nanostructures: (a) AFM topography image of an indium arsenide nanowire (top) and corresponding nano-infrared image (bottom) [42], the incident frequency is 901 cm–1, scale bar, 1 μm; (b) ultrafast near-field images of the indium antimonide nanowire with pump-probe delays from 0—10 ps[44], scale bar, 500 nm; (c) infrared amplitude spectra of the indium arsenide twinning superlattice nanowire at different pump-probe delay times[43]; (d) near-field images of metallic (M1 and M2) and semiconducting (S1 and S2) carbon nanotubes at different gate volrages –20 V (top panel) and 0 V (bottom panel)[48].
图 3 氮化硼中双曲声子极化激元的近场光学研究 (a)氮化硼薄层(厚度为256 nm)中声子极化激元的近场光学图像, 入射光频率为1560 cm–1, 标尺为800 nm(左); 声子极化激元波长随氮化硼薄层厚度的变化趋势[6], 入射光频率为1560 cm–1(右); (b)氮化硼纳米管(厚度为40 nm)中声子极化激元的近场光学图像[51], 入射光频率为1400 cm–1; (c)氮化硼薄层中声子极化激元体局域(M0)和表面局域(SM0)模式的近场光学图像[52], 黑色和白色箭头表示薄片及其边缘上的近场振荡周期, 分别对应于M0和SM0模式波长的一半, 入射光频率为1420 cm–1, 标尺为2 μm; (d)氮化硼超构表面中声子极化激元的渠道化传播现象[53]; (e)氮化硼超构表面中声子极化激元的光学拓扑转变, 内陷型波前(上)和外扩型波前(下)[54]
Fig. 3. Near-field optical study of hyperbolic phonon polaritons in boron nitride (hBN): (a) Near-field image of phonon polaritoins in hBN (thickness 256 nm), the incident frequency is 1560 cm–1. Scale bar, 800 nm (left); wavelength of phonon polaritons probed at 1560 cm–1 for hBN with different thicknesses (right)[6]; (b) near-field image of phonon polaritons in hBN nanotubes[51], the incident frequency is 1400 cm–1; (c) near-field image of volume-confined (M0) and surface (SM0) phonon polaritons of a 40 nm-thick hBN flake at 1420 cm–1[52], the black and white arrows indicate the periods of near-field oscillations on the flake and its edge, corresponding to half the wavelength of M0 and SM0 modes, respectively, scale bar, 2 μm; (d) phonon polariton canalization in a hBN metasurface[53]; (e) optical topological transition of phonon polaritons in a hBN metasurface: concave wavefronts (top panel) and convex wavefronts (bottom panel)[54].
图 4 氧化钼中各向异性声子极化激元的近场光学成像 (a)氧化钼中椭圆型(上)和双曲型(下)声子极化激元的近场光学图像[58], 入射光频率分别为为990 cm–1 (上)和900 cm–1 (下), 标尺为2 μm ; (b)氧化钼中银天线激发的双曲型声子极化激元, 表现为内陷型波前[59], 入射光频率为944 cm–1; (c)双曲极化激元的反常折射现象, 白色虚线内部衬底为空气, 外部为氧化硅[60], 入射光波长为11.3 μm; (d)双曲极化激元的负反射现象[61], 入射光频率为881 cm–1; (e)氧化钼光栅结构中声子极化激元的单向传播[62], 入射光频率为904 cm–1 [62]
Fig. 4. Near-field imaging of anisotropic polaritons in molybdenum trioxide ($ \alpha $-MoO3): (a) Near-field images of elliptical and hyperbolic phonon polaritons in $ \alpha $-MoO3 at incident frequencies at 990 cm–1 (top panel) and 900 cm–1 (bottom panel) [58], Scale bars, 2 μm; (b) silver antenna-launched hyperbolic phonon polaritons in a $ \alpha $-MoO3 flake recorded at 944 cm–1, revealing concave wavefronts[59]; (c) anomalous refraction of hyperbolic polaritons at $ {\lambda }_{0}=11.3\;{\text{μm}}$, the substrates inside and outside of the white dashed lines are air and silicon dioxide, respectively[60]; (d) negative reflection of heperbolic poalritons[61], the incident frequency is 881 cm–1; (e) unidirectional propagation of phonon polaritons in grating $ \alpha $-MoO3 crystal at frequency 904 cm–1 [62].
图 5 体材料中声子极化激元的近场光学成像 (a)方解石中声子极化激元“幽灵”模式的近场光学图像, 可以实现20 μm的无衍射传播[66], 入射光频率为1460 cm–1; (b)钨酸镉晶体中声子极化激元剪切模式的实空间成像, 其镜像对称性被打破[67], 入射光频率为875 cm–1; (c)钛酸锶晶体中声子极化激元的纳米红外光谱测量结果, 工作频率为远红外频段[68]
Fig. 5. Near-field imaging of phonon polaritons in bulk materials: (a) Near-field image of antenna-launched ghost hepebolic phonon polaritons at the surface of bulk calcite at the illuminating frequency 1460 cm–1, generating diffraction-free propagation with a distance up to 20 μm[66]; (b) real-space imaging of symmetry-broken hyperbolic shear phonon polaritons in monoclinic cadmium tungstate (CdWO4) at frequemcy 875 cm–1 [67] ; (c) hyperspectral far-infrared imaging of surface phonon polaritons in strontium titanate[68].
图 6 二维半导体材料中激子极化激元的近场光学研究 (a)二硒化钨晶体中激子极化激元的近场光学图像[70], 入射光波长为900 nm, 标尺为1 μm; (b)二硒化钨晶体中激子极化激元的超快近场光学成像[71], 入射光波长为$ (760\pm 5)\;{\mathrm{n}}{\mathrm{m}} $, 标尺为2 μm; (c)不用时间延迟下二硒化钨瞬态双曲激子极化激元近场相位图[72], 激发波数为910 cm–1; (d)不同入射偏振下二硒化钨晶体(厚度为9 nm)中激子极化激元的近场光学成像[73], 激发能量为1.44 eV, 标尺为1 μm; (e)二硒化钼晶体中激子极化激元的近场光学图像[7], 激发能量为1.35 eV
Fig. 6. Near-field optical study of exciton polaritons in two-dimensional semiconductors: (a) Near-field image of exciton polaritons in a WSe2 flake taken at $ {\lambda }_{0}=900\;{\mathrm{n}}{\mathrm{m}} $[70], scale bar, 1 μm; (b) ultrafast near-field imaging of exciton polaritons in WSe2[71], $ {\lambda }_{0}=(760\pm 5)\;{\mathrm{n}}{\mathrm{m}}, $ scale bars, 2 μm; (c) near-field phase images of transient hyperbolic exciton polaritons for a series of time delays taken at 910 cm–1 [72]; (d) polarization-dependent near-field images of exciton polaritons in a 9-nm-thick WSe2 sample taken at an excitation energy of 1.44 eV[73], scale bar, 1 μm; (e) near-field image of exciton polaritons in molybdenum selenide (MoSe2) taken at excitation energy of 1.35 eV[7].
图 7 异质结中极化激元的近场光学研究 (a)氮化硼/石墨烯/氮化硼夹层结构中超低损耗石墨烯等离极化激元的近场光学成像, 其传播寿命高达500 fs[74], 入射光子能量为116 meV; (b)石墨烯/氮化硼结构中杂化极化激元(等离极化激元-声子极化激元耦合)波长随背栅电压的变化趋势, 氮化硼声子极化激元波长不随电压变化[76]; (c)石墨烯/氧化钼结构中杂化极化激元波前随费米能级的变化趋势[77]; (d)石墨烯/碳化硅结构中双曲声子极化激元光场分布随入射光频率的变化趋势[79]; (e)氧化硅/黑磷/氧化硅夹层结构中极化激元的超快近场光学成像[81], 标尺为1 μm
Fig. 7. Near-field optical study of polaritons in heterostructures: (a) Near-field imaging of ultra low-loss graphene plasmons in hBN/graphene/hBN heterostructures with a propagation lifetime of up to 500 fs at a photon energy of $ \hslash \omega =116\;{\mathrm{m}}{\mathrm{e}}{\mathrm{V}} $[74]; (b) gate-dependence of the hybrid polariton (coupling between plasmons and phonon polaritons) wavelength in a graphene/hBN heterostructure while the wavelength of hBN phonon polaritons is nearly independent with gate voltage[76]; (c) the hybrid polariton wavefronts in graphene/$ \alpha $-MoO3 heterostructures at different graphene Fermi energies[77]; (d) near-field amplitude images of hyperbolic phonon polaritons in graphene/4H-SiC heterostructures at different illuminating frequencies[79]; (e) ultrafast near-field imaging of polaritons in a SiO2/black phosphorus/SiO2 heterostructure at different delay times between the pump and probe pulses[81], scale bar, 1 μm.
图 8 基于介电环境对极化激元的调控研究 (a)氮化硼声子极化激元在介质性和金属性二氧化钒界面处折射现象的实空间成像, 其波长分别为550 nm和362 nm[83]; (b)基于相变材料Ge3Sb2Te6图案化对氮化硼声子极化激元传播的精确调控[84], 入射光频率为1455 cm–1, 标尺为5 μm; (c)各向异性衬底(黑磷)对氮化硼声子极化激元的调控, 原本各向同性传播的极化激元沿不同方向具有不同波长, 在入射光频率为1420 cm–1时最大各向异性值为1.25[85], 标尺为2 μm; (d)空气衬底(悬空)对石墨烯等离极化激元传播损耗的调控, 即减小其传播损耗[86]
Fig. 8. Manipulation of polaritons based on dielectric environment: (a) Real-space imaging of refraction of hBN phonon polaritons at the dielectric-metallic vanadium dioxide domain boundary with polariton wavelengths of 550 nm and 362 nm[83], respectively; (b) manipulation of hBN phonon polariton propagation based on patterning of the phase change material Ge3Sb2Te6 at an incident frequency of 1455 cm–1[84], scale bars, 5 μm; (c) manipulation of hBN phonon polaritons by an anisotropic substrate (black phosphorus) with a maximum value of anisotropy ($ \alpha =b/a $) $ {\alpha }_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}}=1.25 $ at 1420 cm–1, i.e., originally isotropically propagating poalritons have different wavelengths along different direcitons[85], scale bar, 2 μm; (d) manipulation of graphene plasmon propagation loss by air substrate (suspension), i.e., reduction of the propagation loss[86].
图 9 基于物理场对极化激元的调控研究 (a)低温(60 K)下石墨烯等离极化激元的低损耗传播, 其传播寿命高达皮秒量级(1.6 ps)[89]; (b)不同温度下氮化硼声子极化激元的传播损耗测量, 接近液化氮温度时寿命超过5 ps [90]; (c)不同温度下钛酸锶和铝酸镧/钛酸锶异质结中声子极化激元的起始频率测量[91]; (d)不同背栅电压下极化激元在氧化钼和石墨烯/氧化钼界面处的折射现象[92], 标尺为1 μm; (e)碳化硅晶体中纳米压痕周边应力分布的近场光学测量[94], 地形图像(左), s-SNOM图像(右); (f)不同磁场强度下石墨烯狄拉克磁致激子极化激元的近场光学分布[95]
Fig. 9. Study on the manipulation of polaritons based on physical field: (a) Low-loss propagation of graphene plasmons at liquid-nitrogen temperature (T = 60 K) with propagation lifetime up to 1.6 ps[89]; (b) temperature dependence of hBN phonon polariton propagation loss, with lifetimes exceeding 5 ps when closing to liquild-nitrogen temperatures[90]; (c) the onset frequency of phonon polaritons as a function of temperature in strontium titanate (STO) and lanthanum aluminate/strontium titanate (LAO/STO) heterostructures[91]; (d) refraction phenomenon of gate-tunable negative refraction of polaritons from hyperbolic $ \alpha $-MoO3 to elliptic graphene/$ \alpha $-MoO3[92], scale bar, 1 μm; (e) near-field optical measurments of the residual strain field around the nanoindent in a silicon carbide crystal[94], topography image (left panel), s-SNOM image (right panel); (f) near-field images of magenetic field-dependent Dirac magnetoexcitons in graphene[95].
图 10 基于材料组分对极化激元的调控研究 (a)同位素富集氮化硼(上)和天然氮化硼(下)中声子极化激元的近场光学图像, 入射光频率分别为1510 cm–1和1480 cm–1 [97]; (b)天然氧化钼(左)和同位素富集氧化钼(右)中声子极化激元的近场光学图像, 入射光频率分别为994 cm–1和990 cm–1 [98]; (c)五氧化二钒($ \alpha $-V2O5)晶体中钠原子插层对声子极化激元工作频率(剩余射线带)的调制作用, 实心水平线标记了$ \alpha $-V2O5中的近似横向光学(TO)声子模式(TO1, 975 cm–1; TO2, 770 cm–1)和 $ {\alpha }'$-(Na)V2O5 (TO, 950 cm–1)[99]; (d)氢原子插层对氧化钼中声子极化激元的调制作用, 入射光频率为890 cm–1 [100]
Fig. 10. Study on the manipulation of polaritons based on material components: (a) Near-field images of phonon polaritons in isotopically enriched hBN (top panel) and natural hBN (bottom panel) at incident frequencies of 1510 cm–1 and 1480 cm–1 [97], respectively; (b) near-field images of phonon polaritons in natural $ \alpha $-MoO3 (left panel) and isotopically enriched $ \alpha $-MoO3 (right panel) at incident frequencies of 994 cm–1 and 990 cm–1 [98], respectively; (c) nano-spectroscopy of vanadium pentoxide ($ \alpha $-V2O5) (left panel) and Na-intercalated $ \alpha $-V2O5 ($ {\alpha }'$-(Na)V2O5) (right panel) flakes[99], solid horizontal lines mark the approximate transversal optic (TO) phonon modes in $ \alpha $-V2O5 (TO1, 975 cm–1; TO2, 770 cm–1) and $ {\alpha }'$-(Na)V2O5 (TO, 950 cm–1); (d) optical micrographs and near-field images of a MoO3 flake at 890 cm–1 before intercaltion, after intercalation (10 s) and after deintercalation[100].
图 11 二维转角体系中极化激元的调控 (a)转角双层石墨烯等离极化激元光子晶体的近场光学成像(左)和暗场TEM可视化图像[101]; (b)最小转角石墨烯的光电流探测, 存在电子和空穴分布[104], 标尺为500 nm; (c)转角双层氧化钼中声子极化激元的光学拓扑转变, 当转角为光学魔角($ {\theta =54}^{\circ} $)时, 极化激元沿某一方向高度定向传播[105]; (d)转角三层氧化钼晶体中可以实现极化激元无衍射传播的面内全角度调控[106]
Fig. 11. Manipulation of polaritons in two-dimensional twist systems: (a) Near-field imaging (left) and dark-field TEM visualization (right) of twist bilayer graphene nano-light photonic crystal[101]; (b) photocurrent map of minimally twisted bilayer graphene in the presence of electron and hole distributions[104], scale bar, 500 nm; (c) near-field amplitude images of twisted $ \alpha $-MoO3 at an incident wavelength of 11 μm for different rotation angles, a clear optical topological transition is observed, where polaritons propagate highly oriented along a certain direction at the critical angle of $ {\theta =54}^{\circ} $[105]; (d) near-field amplitude images of trilayer $ \alpha $-MoO3 at an illuminating wavelength of 10.9 μm for different rotation angles[106], demonstrating that in-plane full-angle manipulation of polariton diffraction-free propagation can be achieved.
图 12 基于激发源对方解石中声子极化激元的调控 (a)不同入射光偏振态下, 方解石声子极化激元的近场光学成像[110], 入射光频率为1470 cm–1; (b)沿图(a)黑色虚线方向的近场光场分布, 可以看出当入射光偏振改变时, 天线激发的声子极化激元近场分布不同[110]
Fig. 12. Excitation source-based manipulation of phonon polaritons in calcite: (a) Infrared nano-imaging of phonon polaritons in calcite at different polarization angles at an incident frequency of 1470 cm–1 [110]; (b) near-field amplitude profiles extracted along dashed line in Fig.(a)[110].
图 13 极化激元的相关应用 (a) 基于氮化硼声子极化激元的超分辨成像[111], 上图为实验装置示意图, 中图为hBN薄片的AFM形貌, 下图为用宽带激光器拍摄的hBN下方金纳米盘的近场图像, 标尺为0.5 μm; (b) 基于氧化钼声子极化激元的亚衍射聚焦, 入射光波长为11.16 μm[60]; (c) 石墨烯/二硫化钼异质结中基于二硫化钼光生载流子掺杂对石墨烯等离极化激元的光调制[112]; (d) 基于氮化硼声子极化激元干涉对内部缺陷识别的近场成像图, 激发波数为1541 cm–1 [113]; (e) 包含分子的氮化硼高光谱成像图[114]; (f) 基于氮化硼声子极化激元的分子探测, hBN带和被分子覆盖的hBN带, 采用hBN中的声子极性子进行分子检测[115]
Fig. 13. Applications of polaritons: (a) Super-resolution imaging via phonon polaritons in hBN[111], upper panel is the sketch of the experimental setup, middle panel is the AFM topography of the hBN flake, bottom panel is the near-field images of gold nanodisks beneath hBN taken with the broadband laser. Scale bars, 0.5 μm; (b) sub-diffractional focusing based on refraction of phonon polaritons in $ \alpha $-MoO3 at an illuminating wavelength of 11.16 μm[60]; (c) optical switching of graphene plasmons based on the photogenerated carrier doping in a graphene/MoS2 heterostructure. Dashed lines indicate the graphene edge[112]; (d) near-field image of the hBN slab revealing concealed inner defects at an incident frequency of 1541 cm–1 [113]; (e) hyperspectral line scan map of hBN containg organic molecules[114]; (f) infrared transmission spectra of bare molecular layer, hBN ribbons and hBN ribbons covered with molecules, demonstrating molecular detection using phonon polaritons in hBN[115].
-
[1] Huang K U N 1951 Nature 167 779
[2] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
[3] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar
[4] Basov D N, Fogler M M, García de Abajo F J 2016 Science 354 aag1992Google Scholar
[5] Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L, Koppens F 2017 Nat. Mater. 16 182Google Scholar
[6] Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Neto A H C, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2014 Science 343 1125Google Scholar
[7] Hu F, Luan Y, Scott M E, Yan J, Mandrus D G, Xu X, Fei Z 2017 Nat. Photon. 11 356Google Scholar
[8] Berkowitz M E, Kim B S Y, Ni G, McLeod A S, Lo C F B, Sun Z, Gu G, Watanabe K, Taniguchi T, Millis A J, Hone J C, Fogler M M, Averitt R D, Basov D N 2021 Nano Lett. 21 308Google Scholar
[9] Costa A T, Vasilevskiy M I, Fernández-Rossier J, Peres N M R 2023 Nano Lett. 23 4510Google Scholar
[10] Wolf E, Nieto-Vesperinas M 1985 J. Opt. Soc. Am. A 2 886
[11] Hillenbrand R, Keilmann F, Hanarp P, Sutherland D S, Aizpurua J 2003 Appl. Phys. Lett. 83 368Google Scholar
[12] Cvitkovic A, Ocelic N, Hillenbrand R 2007 Nano Lett. 7 3177Google Scholar
[13] Hillenbrand R, Keilmann F 2000 Phys. Rev. Lett. 85 3029Google Scholar
[14] Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar
[15] Andryieuski A, Zenin V A, Malureanu R, Volkov V S, Bozhevolnyi S I, Lavrinenko A V 2014 Nano Lett. 14 3925Google Scholar
[16] Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R 2013 Nano Lett. 13 1065Google Scholar
[17] Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar
[18] Deutsch B M, Hillenbrand R, Novotny L 2008 Opt. Express 16 2 494
[19] Taubner T, Hillenbrand R, Keilmann F 2003 J. Micro. 210 311Google Scholar
[20] 段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar
Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar
[21] Gramotnev D K, Bozhevolnyi S I 2014 Nat. Photon. 8 13Google Scholar
[22] Gucciardi P G, Bachelier G, Allegrini M 2006 J. Appl. Phys. 99 124309Google Scholar
[23] Knoll B, Keilmann F 2000 Opt. Commun. 182 321Google Scholar
[24] Ocelic N, Huber A, Hillenbrand R 2006 Appl. Phys. Lett. 89 101124Google Scholar
[25] Moreno C, Alda J, Kinzel E, Boreman G 2017 Appl. Opt. 56 1037Google Scholar
[26] HillenbRand R, Knoll B, Keilmann F 2001 J. Micro. 202 77Google Scholar
[27] Zenhausern F, Martin Y, Wickramasinghe H K 1995 Science 269 1083Google Scholar
[28] Richards D, Zayats A, Keilmann F, Hillenbrand R 2004 Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362 787
[29] Cvitkovic A, Ocelic N, Hillenbrand R 2007 Opt. Express 15 8550Google Scholar
[30] Amarie S, Keilmann F 2011 Phys. Rev. B 83 045404Google Scholar
[31] Chen X Z, Hu D B, Mescall R, You G J, Basov D N, Dai Q, Liu M K 2019 Adv. Mater. 31 1804774Google Scholar
[32] Jiang B Y, Zhang L M, Castro Neto A H, Basov D N, Fogler M M 2016 J. Appl. Phys. 119 054305Google Scholar
[33] Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N 2011 Nano Lett. 11 4701Google Scholar
[34] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar
[35] Dai S, Ma Q, Yang Y, Rosenfeld J, Goldflam M D, McLeod A, Sun Z, Andersen T I, Fei Z, Liu M, Shao Y, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2017 Nano Lett. 17 5285Google Scholar
[36] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar
[37] Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369Google Scholar
[38] Fei Z, Iwinski E G, Ni G X, Zhang L M, Bao W, Rodin A S, Lee Y, Wagner M, Liu M K, Dai S, Goldflam M D, Thiemens M, Keilmann F, Lau C N, Castro-Neto A H, Fogler M M, Basov D N 2015 Nano Lett. 15 4973Google Scholar
[39] Dong Y, Xiong L, Phinney I Y, Sun Z, Jing R, McLeod A S, Zhang S, Liu S, Ruta F L, Gao H, Dong Z, Pan R, Edgar J H, Jarillo-Herrero P, Levitov L S, Millis A J, Fogler M M, Bandurin D A, Basov D N 2021 Nature 594 513Google Scholar
[40] Zhao W, Zhao S, Li H, Wang S, Wang S, Utama M I B, Kahn S, Jiang Y, Xiao X, Yoo S, Watanabe K, Taniguchi T, Zettl A, Wang F 2021 Nature 594 517Google Scholar
[41] Kim B S Y, Sternbach A J, Choi M S, Sun Z, Ruta F L, Shao Y, McLeod A S, Xiong L, Dong Y, Chung T S, Rajendran A, Liu S, Nipane A, Chae S H, Zangiabadi A, Xu X, Millis A J, Schuck P J, Dean C R, Hone J C, Basov D N 2023 Nat. Mater. 22 838Google Scholar
[42] Zhou Y X, Chen R K, Wang J Y, Huang Y S, Li M, Xing Y J, Duan J H, Chen J J, Farrell J D, Xu H Q, Chen J N 2018 Adv. Mater. 30 1802551Google Scholar
[43] Xue M F, Li M, Huang Y S, Chen R K, Li YL, Wang J Y, Xing Y J, Chen J J, Yan H Q, Xu H Q, Chen J N 2020 Adv. Mater. 32 2004120Google Scholar
[44] Xue M F, Pan D, Zhao J H, Chen J N 2023 Adv. Mater. 35 2208952Google Scholar
[45] Luttinger J M 2004 J. Math. Phys 4 1154
[46] Voit J 1995 Rep. Pro. Phys. 58 977Google Scholar
[47] Shi Z W, Hong X P, Bechtel H A, Zeng B, Martin M C, Watanabe K, Taniguchi T, Shen Y R, Wang F 2015 Nat. Photon. 9 515Google Scholar
[48] Wang S, Zhao S H, Shi Z W, Wu F Q, Zhao Z Y, Jiang L L, Watanabe K, Taniguchi T, Zettl A, Zhou C W, Wang F 2020 Nat. Mater. 19 986Google Scholar
[49] Wang C, Huang S Y, Xing Q X, Xie Y G, Song C Y, Wang F J, Yan H G 2020 Nat. Commun. 11 1158Google Scholar
[50] Chen S, Leng P L, Konečná A, et al. 2023 Nat. Mater. 22 860Google Scholar
[51] Xu X G, Ghamsari B G, Jiang J H, Gilburd L, Andreev G O, Zhi C, Bando Y, Golberg D, Berini P, Walker G C 2014 Nat. Commun. 5 4782Google Scholar
[52] Li P, Dolado I, Alfaro-Mozaz F J, Nikitin A Y, Casanova F, Hueso L E, Vélez S, Hillenbrand R 2017 Nano Lett. 17 228Google Scholar
[53] Li P, Hu G, Dolado I, Tymchenko M, Qiu C-W, Alfaro-Mozaz F J, Casanova F, Hueso L E, Liu S, Edgar J H, Vélez S, Alu A, Hillenbrand R 2020 Nat. Commun. 11 3663Google Scholar
[54] Li P, Dolado I, Alfaro-Mozaz F J, Casanova F, Hueso L E, Liu S, Edgar J H, Nikitin A Y, Vélez S, Hillenbrand R 2018 Science 359 892Google Scholar
[55] Shi Z W, Bechtel H A, Berweger S, Sun Y, Zeng B, Jin C, Chang H, Martin M C, Raschke M B, Wang F 2015 ACS Photon. 2 790Google Scholar
[56] Dai S, Fang W, Rivera N, Stehle Y, Jiang B-Y, Shen J, Tay R Y, Ciccarino C J, Ma Q, Rodan-Legrain D, Jarillo-Herrero P, Teo E H T, Fogler M M, Narang P, Kong J, Basov D N 2019 Adv. Mater. 31 1806603Google Scholar
[57] Dai S, Tymchenko M, Yang Y, Ma Q, Pita-Vidal M, Watanabe K, Taniguchi T, Jarillo-Herrero P, Fogler M M, Alù A, Basov D N 2018 Adv. Mater. 30 1706358Google Scholar
[58] Ma W, Alonso-González P, Li S, Nikitin A Y, Yuan J, Martín-Sánchez J, Taboada-Gutiérrez J, Amenabar I, Li P, Vélez S, Tollan C, Dai Z, Zhang Y, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R, Bao Q 2018 Nature 562 557Google Scholar
[59] Zheng Z, Xu N, Oscurato S L, Tamagnone M, Sun F, Jiang Y, Ke Y, Chen J, Huang W, Wilson W L, Ambrosio A, Deng S, Chen H 2019 Sci. Adv. 5 eaav8690Google Scholar
[60] Duan J H, Álvarez-Pérez G, Tresguerres-Mata A I F, Taboada-Gutiérrez J, Voronin K V, Bylinkin A, Chang B, Xiao S, Liu S, Edgar J H, Martín J I, Volkov V S, Hillenbrand R, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2021 Nat. Commun. 12 4325Google Scholar
[61] Álvarez-Pérez G, Duan J H, Taboada-Gutiérrez J, Ou Q, Nikulina E, Liu S, Edgar J H, Bao Q, Giannini V, Hillenbrand R, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2022 Sci. Adv. 8 eabp8486Google Scholar
[62] Zhang Q, Ou Q, Si G, Hu G, Dong S, Chen Y, Ni J, Zhao C, Fuhrer M S, Yang Y, Alù A, Hillenbrand R, Qiu C-W 2022 Sci. Adv. 8 eabn9774Google Scholar
[63] Martín-Sánchez J, Duan J H, Taboada-Gutiérrez J, Álvarez-Pérez G, Voronin K V, Prieto I, Ma W, Bao Q, Volkov V S, Hillenbrand R, Nikitin A Y, Alonso-González P 2021 Sci. Adv. 7 eabj0127Google Scholar
[64] Zheng Z B, Jiang J Y, Xu N S, Wang X M, Huang W C, Ke Y L, Zhang S R, Chen H J, Deng S Z 2022 Adv. Mater. 34 2104164Google Scholar
[65] Qu Y P, Chen N, Teng H C, Hu H, Sun J Z, Yu R W, Hu D B, Xue M F, Li C, Wu B, Chen J N, Sun Z P, Liu M K, Liu Y Q, García de Abajo F J, Dai Q 2022 Adv. Mater. 34 2105590Google Scholar
[66] Ma W L, Hu G W, Hu D B, Chen R K, Sun T, Zhang X L, Dai Q, Zeng Y, Alù A, Qiu C W, Li P N 2021 Nature 596 362Google Scholar
[67] Hu G W, Ma W L, Hu D B, Wu J, Zheng C Q, Liu K P, Zhang X D, Ni X, Chen J N, Zhang X L, Dai Q, Caldwell J D, Paarmann A, Alù A, Li P N, Qiu C W 2023 Nat. Nanotechnol. 18 64Google Scholar
[68] Lahneman D J, Qazilbash M M 2021 Phys. Rev. B 104 235433Google Scholar
[69] Koch S W, Kira M, Khitrova G, Gibbs H M 2006 Nat. Mater. 5 523Google Scholar
[70] Fei Z, Scott M E, Gosztola D J, Foley J J, Yan J, Mandrus D G, Wen H, Zhou P, Zhang D W, Sun Y, Guest J R, Gray S K, Bao W, Wiederrecht G P, Xu X 2016 Phys. Rev. B 94 081402Google Scholar
[71] Mrejen M, Yadgarov L, Levanon A, Suchowski H 2019 Sci. Adv. 5 eaat9618Google Scholar
[72] Sternbach A J, Chae S H, Latini S, Rikhter A A, Shao Y, Li B, Rhodes D, Kim B, Schuck P J, Xu X, Zhu X Y, Averitt R D, Hone J, Fogler M M, Rubio A, Basov D N 2021 Science 371 617Google Scholar
[73] Hu F, Luan Y, Speltz J, Zhong D, Liu C H, Yan J, Mandrus D G, Xu X, Fei Z 2019 Phys. Rev. B 100 121301Google Scholar
[74] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421Google Scholar
[75] Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C A M, Zhu S E, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar
[76] Hu G W, Shen J L, Qiu C W, Alù A, Dai S Y 2020 Adv. Opt. Mater. 8 1901393Google Scholar
[77] Hu H, Chen N, Teng H, Yu R W, Qu Y P, Sun J, Xue M F, Hu D, Wu B, Li C, Chen J, Liu M, Sun Z, Liu Y, Li P, Fan S, García de Abajo F J, Dai Q 2022 Nat. Nanotechnol. 17 940Google Scholar
[78] Zeng Y, Ou Q, Liu L, Zheng C, Wang Z, Gong Y, Liang X, Zhang Y, Hu G, Yang Z, Qiu C W, Bao Q, Chen H, Dai Z 2022 Nano Lett. 22 4260Google Scholar
[79] Duan J H, Álvarez-Pérez G, Voronin K V, Prieto I, Taboada-Gutiérrez J, Volkov V S, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2021 Sci. Adv. 7 eabf2690Google Scholar
[80] Zhang Q, Ou Q D, Hu G W, Liu J Y, Dai Z G, Fuhrer M S, Bao Q L, Qiu C W 2021 Nano Lett. 21 3112Google Scholar
[81] Huber M A, Mooshammer F, Plankl M, Viti L, Sandner F, Kastner L Z, Frank T, Fabian J, Vitiello M S, Cocker T L, Huber R 2017 Nat. Nanotechnol. 12 207Google Scholar
[82] Fali A, White S T, Folland T G, He M, Aghamiri N A, Liu S, Edgar J H, Caldwell J D, Haglund R F, Abate Y 2019 Nano Lett. 19 7725Google Scholar
[83] Folland T G, Fali A, White S T, Matson J R, Liu S, Aghamiri N A, Edgar J H, Haglund R F, Abate Y, Caldwell J D 2018 Nat. Commun. 9 4371Google Scholar
[84] Chaudhary K, Tamagnone M, Yin X, Spägele C M, Oscurato S L, Li J, Persch C, Li R, Rubin N A, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Wuttig M, Edgar J H, Ambrosio A, Capasso F 2019 Nat. Commun. 10 4487Google Scholar
[85] Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171Google Scholar
[86] Hu H, Yu R W, Teng H C, Hu D B, Chen N, Qu Y P, Yang X X, Chen X Z, McLeod A S, Alonso-González P, Guo X D, Li C, Yao Z H, Li Z J, Chen J N, Sun Z P, Liu M K, García de Abajo F J, Dai Q 2022 Nat. Commun. 13 1465Google Scholar
[87] Dai S Y, Quan J M, Hu G W, Qiu C W, Tao T H, Li X Q, Alù A 2018 Nano Lett. 19 1009
[88] Zheng Z B, Sun F S, Xu N S, Huang W C, Chen X X, Ke Y L, Zhan R Z, Chen H J, Deng S Z 2022 Adv. Opt. Mater. 10 2102057Google Scholar
[89] Ni G X, McLeod D A, Sun Z Y, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530Google Scholar
[90] Ni G X, McLeod A S, Sun Z Y, Matson J R, Lo C F B, Rhodes D A, Ruta F L, Moore S L, Vitalone R A, Cusco R, Artús L, Xiong L, Dean C R, Hone J C, Millis A J, Fogler M M, Edgar J H, Caldwell J D, Basov D N 2021 Nano Lett. 21 5767Google Scholar
[91] Zhou Y X, Waelchli A, Boselli M, Crassee I, Bercher A, Luo W W, Duan J H, van Mechelen J, van der Marel D, Teyssier J, Willem Rischau C, Korosec L, Gariglio S, Triscone J M, Kuzmenko A B 2023 Nat. Commun. 14 7686Google Scholar
[92] Hu H, Chen N, Teng H, Yu R W, Xue M F, Chen K, Xiao Y, Qu Y P, Hu D, Chen J 2023 Science 379 558Google Scholar
[93] Zhou Z, Song R K, Xu J B, Ni X, Dang Z J, Zhao Z C, Quan J M, Dong S Y, Hu W D, Huang D, Chen K, Wang Z S, Cheng X B, Raschke M B, Alù A, Jiang T 2023 Nano Lett. 23 11252Google Scholar
[94] Huber A J, Ziegler A, Köck T, Hillenbrand R 2009 Nat. Nanotechnol. 4 153Google Scholar
[95] Dapolito M, Tsuneto M, Zheng W, Wehmeier L, Xu S, Chen X, Sun J, Du Z, Shao Y, Jing R, Zhang S, Bercher A, Dong Y, Halbertal D, Ravindran V, Zhou Z, Petrovic M, Gozar A, Carr G L, Li Q, Kuzmenko A B, Fogler M M, Basov D N, Du X, Liu M 2023 Nat. Nanotechnol. 18 1409Google Scholar
[96] Lyu B S, Li H Y, Jiang L L, Shan W F, Hu C, Deng A L, Ying Z, Wang L L, Zhang Y R, Bechtel H A, Martin M C, Taniguchi T, Watanabe K, Luo W D, Wang F, Shi Z W 2019 Nano Lett. 19 1982Google Scholar
[97] Giles A J, Dai S, Vurgaftman I, Hoffman T, Liu S, Lindsay L, Ellis C T, Assefa N, Chatzakis I, Reinecke T L 2018 Nat. Mater. 17 134Google Scholar
[98] Zhao Y Q, Chen J C, Xue M F, Chen R K, Jia S T, Chen J J, Bao L H, Gao H J, Chen J N 2022 Nano Lett. 22 10208Google Scholar
[99] Taboada-Gutiérrez J, Álvarez-Pérez G, Duan J H, Ma W, Crowley K, Prieto I, Bylinkin A, Autore M, Volkova H, Kimura K 2020 Nat. Mater. 19 964Google Scholar
[100] Wu Y J, Ou Q D, Yin Y F, Li Y, Ma W L, Yu W Z, Liu G Y, Cui X Q, Bao X Z, Duan J H, Álvarez-Pérez G, Dai Z G, Shabbir B, Medhekar N, Li X P, Li C M, Alonso-González P, Bao Q L 2020 Nat. Commun. 11 2646Google Scholar
[101] Sunku S, Ni G, Jiang B-Y, Yoo H, Sternbach A, McLeod A, Stauber T, Xiong L, Taniguchi T, Watanabe K 2018 Science 362 1153Google Scholar
[102] Hesp N C, Torre I, Rodan-Legrain D, Novelli P, Cao Y, Carr S, Fang S, Stepanov P, Barcons-Ruiz D, Herzig Sheinfux H 2021 Nat. Phys. 17 1162Google Scholar
[103] Sunku S S, Halbertal D, Stauber T, Chen S, McLeod A S, Rikhter A, Berkowitz M E, Lo C F B, Gonzalez-Acevedo D E, Hone J C, Dean C R, Fogler M M, Basov D N 2021 Nat. Commun. 12 1641Google Scholar
[104] Hesp N C, Torre I, Barcons-Ruiz D, Herzig Sheinfux H, Watanabe K, Taniguchi T, Krishna Kumar R, Koppens F H 2021 Nat. Commun. 12 1640Google Scholar
[105] Duan J H, Capote-Robayna N, Taboada-Gutiérrez J, Álvarez-Pérez G, Prieto I, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2020 Nano Lett. 20 5323Google Scholar
[106] Duan J H, Álvarez-Pérez G, Lanza C, Voronin K, Tresguerres-Mata A, Capote-Robayna N, Álvarez-Cuervo J, Tarazaga Martín-Luengo A, Martín-Sánchez J, Volkov V, Nikitin A, Alonso-González P 2023 Nat. Mater. 22 867Google Scholar
[107] Hu G W, Ou Q D, Si G Y, Wu Y J, Wu J, Dai Z G, Krasnok A, Mazor Y, Zhang Q, Bao Q L, Qiu C W, Alù A 2020 Nature 582 209Google Scholar
[108] Chen M Y, Lin X, Dinh T H, Zheng Z R, Shen J L, Ma Q, Chen H S, Jarillo-Herrero P, Dai S Y 2020 Nat. Mater. 19 1307Google Scholar
[109] Zheng Z B, Sun F S, Huang W C, Jiang J Y, Zhan R Z, Ke Y L, Chen H J, Deng S Z 2020 Nano Lett. 20 5301Google Scholar
[110] Hu C X, Sun T, Zeng Y, Ma W L, Dai Z G, Yang X S, Zhang X L, Li P N 2023 eLight 3 14Google Scholar
[111] Li P N, Lewin M, Kretinin A V, Caldwell J D, Novoselov K S, Taniguchi T, Watanabe K, Gaussmann F, Taubner T 2015 Nat. Commun. 6 7507Google Scholar
[112] Guo X D, Liu R N, Hu D B, Hu H, Wei Z, Wang R, Dai Y Y, Cheng Y, Chen K, Liu K H, Zhang G Y, Zhu X, Sun Z P, Yang X X, Dai Q 2020 Adv. Mater. 32 1907105Google Scholar
[113] Dai S Y, Tymchenko M, Xu Z Q, Tran T T, Yang Y F, Ma Q, Watanabe K, Taniguchi T, Jarillo-Herrero P, Aharonovich I, Basov D N, Tao T H, Alù A 2018 Nano Lett. 18 5205Google Scholar
[114] Bylinkin A, Schnell M, Autore M, Calavalle F, Li P, Taboada-Gutièrrez J, Liu S, Edgar J H, Casanova F, Hueso L E, Alonso-Gonzalez P, Nikitin A Y, Hillenbrand R 2021 Nat. Photon. 15 197Google Scholar
[115] Autore M, Li P, Dolado I, Alfaro-Mozaz F J, Esteban R, Atxabal A, Casanova F, Hueso L E, Alonso-González P, Aizpurua J, Nikitin A Y, Vélez S, Hillenbrand R 2018 Light Sci. Appl. 7 17172
[116] Dai S, Ma Q, Andersen T, Mcleod A S, Fei Z, Liu M K, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Commun. 6 6963Google Scholar
[117] Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M 2010 Nat. Photon. 4 477Google Scholar
[118] Almeida V R, Barrios C A, Panepucci R R, Lipson M 2004 Nature 431 1081Google Scholar
[119] Nozaki K, Matsuo S, Fujii T, Takeda K, Shinya A, Kuramochi E, Notomi M 2019 Nat. Photon. 13 454Google Scholar
[120] Jahani S, Kim S, Atkinson J, Wirth J C, Kalhor F, Noman A A, Newman W D, Shekhar P, Han K, Van V, DeCorby R G, Chrostowski L, Qi M, Jacob Z 2018 Nat. Commun. 9 1893Google Scholar
计量
- 文章访问数: 3632
- PDF下载量: 262
- 被引次数: 0