-
飞行器目标经过高温尾焰传输后的红外偏振辐射是红外探测设备对飞行器进行探测、识别、跟踪、告警的重要依据. 在目标与背景红外辐射强度对比度低的情况下, 将偏振特性差异结合到强度探测中可显著提高系统的探测与识别能力. 本文基于Monte Carlo法建立了高温尾焰红外偏振辐射传输特性仿真模型, 根据尾焰空间气体组分的红外吸收系数谱, 模拟光子在尾焰空间的多次散射过程, 统计最终接收到的光子特性, 分析了传输距离、尾焰温度和压强、气体组分浓度和探测波长对红外偏振光传输特性的影响. 研究结果表明: 本文研究方法和HITRAN库关于辐亮度透过率的计算结果误差基本保持在2%以内; 随着距离增大, 温度和压强对光波偏振辐射传输特性的影响更为显著. 压强与透过率和偏振度呈负相关, 温度的影响与气体的类型、温度范围等因素有关; 辐亮度透过率和偏振度与尾焰空间气体的吸收系数和传输距离呈指数衰减关系; 探测波长不同, 光波的偏振辐射传输特性也存在差异.
-
关键词:
- 偏振辐射传输 /
- 高温尾焰 /
- 红外吸收光谱 /
- Monte Carlo法
Infrared polarization radiation of aircraft targets after transmission through high-temperature exhaust plumes is an important basis for infrared detection equipment to detect, identify, track and warn aircraft. At present, most of the studies on the transmission characteristics of gas polarized radiation focus on the visible wavelength band, and the research object is mainly the atmospheric environment. The study of infrared polarization radiation transmission characteristics in the special gas environment of high-temperature exhaust plume is still insufficient. In this paper, the Monte Carlo method is used to model the transmission of infrared polarized light in a high-temperature exhaust plume, and the absorption coefficients of H2O in 2.5~3.3 μm band and CO2 in 4~5 μm band are calculated by using the HITRAN database. The multiple scattering process of photons in the exhaust plume space is simulated, and the changes of the cosine of motion and cosine of vibration of the photons in the collision events are analyzed at the microscopic level. Also, the photon characteristics are statistically analyzed based on the principles of the calculation of polarization and transmittance. Based on the simulation results, the changes of radiative transmittance and polarization at different transmission distances are compared, and the effects of exhaust plume temperature, pressure, gas component concentration and detection wavelength on the transmission characteristics of infrared polarized light are analyzed as well. The experimental results prove that the error between the calculated radiative transmittance in this study and the HITRAN database is basically within 2%. The effects of temperature and pressure on the transmission characteristics of polarized light become more and more significant as the distance increases. Pressure is negatively correlated with transmittance and polarization, while the effect of temperature is related to gas type and temperature range. Radiant transmittance and polarization decay exponentially with the absorption coefficient of the gas in the exhaust plume space as well as with the transmission distance. Different detection wavelengths also lead to differences in polarized light transmission characteristics.-
Keywords:
- Polarized radiation transfer /
- High-temperature tail flame /
- Infrared absorption spectroscopy /
- Monte Carlo method
-
图 8 传输距离变化对不同气体组分尾焰空间的传输特性的影响 (a) H2O透过率; (b) H2O偏振度; (c) CO2透过率; (d) CO2偏振度
Fig. 8. The influence of transmission distance variation on the transmission characteristics of different gas components in the tail flame space: (a) H2O Transmittance; (b) H2O Polarization Degree; (c) CO2 Transmittance; (d) CO2 Polarization Degree.
图 9 波长变化对不同气体组分尾焰空间的传输特性的影响 (a) H2O透过率; (b) H2O偏振度; (c) CO2透过率; (d) CO2偏振度
Fig. 9. The influence of wavelength variation on the transmission characteristics of different gas components in the tail flame space: (a) H2O Transmittance; (b) H2O Polarization Degree; (c) CO2· Transmittance; (d) CO2 Polarization Degree.
-
[1] Xin W, Zhong W H, Shi Y J, Shi Y M, Jing J W, Xu T F, Guo J X, Liu W Z, Li Y Z, Liang Z Z, Xin X, Cheng J L, Hu W D, Xu H Y, Liu Y C 2024 Adv. Mater. 36 2306772
Google Scholar
[2] Zhong F, Wang H, Wang Z, Wang Y, He T, Wu P S, Peng M, Wang H L, Xu T F, Wang F, Wang P, Miao J S, Hu W D 2021 Nano Res. 14 1840
Google Scholar
[3] Tong L, Huang X Y, Wang P, Ye L, Peng M, An L C, Sun Q D, Zhang Y, Yang G M, Li Z, Zhong F, Wang F, Wang Y X, Motlag M, Wu W Z, Cheng G J, Hu W D 2020 Nat. Commun. 11 2308
Google Scholar
[4] 甄玉冉, 邓杰, 布勇浩, 代旭, 余宇, 石梦碟, 王若文, 叶韬, 陈刚, 周靖 2023 红外与毫米波学报 43 52
Zhen Y R, Deng J, Bu Y H, Dai X, Yu Y, Shi M D, Wang R W, Ye T, Chen G, Zhou J 2023 J. Infrared Millim. Waves 43 52
[5] 胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701
Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701
Google Scholar
[6] 郑海晶, 白廷柱, 王全喜 2018 光子学报 47 162
Zheng H J, Bai T Z, Wang Q X 2018 Acta Photonica Sin. 47 162
[7] 王子谦, 张旭东, 金海红, 范之国 2014 中国激光 41 213
Wang Z Q, Zhang X D, Jin H H, Fan Z G 2014 Chin. J. Lasers 41 213
[8] 王威, 褚金奎, 崔岩, 支炜, 陈辰 2013 中国激光 40 513001
Google Scholar
Wang W, Chu J K, Cui Y, Zhi W, Chen C 2013 Chin. J. Lasers 40 513001
Google Scholar
[9] 提汝芳, 孙晓兵, 李树, 陈震霆 2018 红外与激光工程 47 1111001
Google Scholar
Ti R F, Sun X B, Li S, Chen Z T 2018 Infrared Laser Eng. 47 1111001
Google Scholar
[10] Pust N J, Shaw J A 2012 Opt. Express 20 15559
Google Scholar
[11] 胡帅, 高太长, 刘磊, 易红亮, 贲勋 2015 物理学报 64 034204
Google Scholar
Hu S, Gao T C, Liu L, Yi H L, Ben X 2015 Acta Phys. Sin. 64 034204
Google Scholar
[12] van der Laan J D, Wright J B, Kemme S A, Scrymgeour D A 2018 Appl. Opt. 57 5464
Google Scholar
[13] Wang K P 2019 M. S. Thesis (Hefei: Hefei University Of Technology) (in Chinses) [王开鹏 2019 硕士学位论文 (合肥: 合肥工业大学)]
Wang K P 2019 M. S. Thesis (Hefei: Hefei University Of Technology) (in Chinses)
[14] 张肃, 战俊彤, 白思克, 付强, 段锦, 姜会林 2016 光学学报 36 729001
Google Scholar
Zhang S, Zhan J T, Bai S K, Fu Q, Duan J, Jiang H L 2016 Acta Optica Sin. 36 729001
Google Scholar
[15] 曾祥伟, 张燕, 杨钧秀 2023 光学学报 43 1829001
Google Scholar
Zeng X W, Zhang Y, Yang J X 2023 Acta Optica Sin. 43 1829001
Google Scholar
[16] 吴琼, 王博, 王涛, 朱仁江, 张鹏, 汪丽杰 2021 光子学报 50 0406002
Wu Q, Wang B, Wang T, Zhu R J, Zhang P, Wang L J 2021 Acta Photonica Sin. 50 0406002
[17] 刘丹丹, 黄印博, 戴聪明, 魏合理, 饶瑞中 2013 红外与激光工程 42 1776
Google Scholar
Liu D D, Huang Y B, Dai C M, Wei H L, Rao R Z 2013 Infrared Laser Eng. 42 1776
Google Scholar
[18] 崔洪鲁, 闫召爱, 张炳炎, 郭文杰, 胡雄 2020 空间科学学报 40 1046
Google Scholar
Cui H L, Yan Z A, Zhang B Y, Guo W J, Hu X 2020 Chin. J. Space Sci. 40 1046
Google Scholar
[19] Hopcraft K, Chang P, Walker J, Jakeman E 2000 In Light Scattering from Microstructures: Lectures of the Summer School of Laredo, University of Cantabria, Held at Laredo, Spain, Sept. 11–13, 1998 (Berlin: Springer), pp 135–158
[20] Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420
Google Scholar
[21] Whitney B A 2011 In Fluid Flows To Black Holes: A Tribute to S Chandrasekhar on His Birth Centenary (Singapore: World Scientific), pp 151–176
[22] 云玉新, 吕天光, 韩洪, 王泽众, 姚金霞, 李秀卫, 赵笑笑 2011 红外与激光工程 40 992
Google Scholar
Yun Y X, Lv T G, Han H, Wang Z Z, Yao J X, Li X W, Zhao X X 2011 Infrared Laser Eng. 40 992
Google Scholar
[23] 郑海晶, 白廷柱, 王全喜, 曹峰梅 2017 光学学报 37 0726001
Google Scholar
Zheng H J, Bai T Z, Wang Q X, Cao F M 2017 Acta Optica Sin. 37 0726001
Google Scholar
计量
- 文章访问数: 287
- PDF下载量: 13
- 被引次数: 0