搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Monte Carlo法的高温尾焰红外偏振辐射传输特性仿真

周瑾 陈雪琦 孔筱芳 曹姝清 梁彦 张硕 顾国华 陈钱 万敏杰

引用本文:
Citation:

基于Monte Carlo法的高温尾焰红外偏振辐射传输特性仿真

周瑾, 陈雪琦, 孔筱芳, 曹姝清, 梁彦, 张硕, 顾国华, 陈钱, 万敏杰

Simulation of Infrared Polarized Radiation Transmission Characteristics of High-Temperature Tail Flame Based on Monte Carlo Method

ZHOU Jin, CHEN Xueqi, KONG Xiaofang, CAO Shuqing, LIANG Yan, ZHANG Shuo, GU Guohua, CHEN Qian, WAN Minjie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 飞行器目标经过高温尾焰传输后的红外偏振辐射是红外探测设备对飞行器进行探测、识别、跟踪、告警的重要依据. 在目标与背景红外辐射强度对比度低的情况下, 将偏振特性差异结合到强度探测中可显著提高系统的探测与识别能力. 本文基于Monte Carlo法建立了高温尾焰红外偏振辐射传输特性仿真模型, 根据尾焰空间气体组分的红外吸收系数谱, 模拟光子在尾焰空间的多次散射过程, 统计最终接收到的光子特性, 分析了传输距离、尾焰温度和压强、气体组分浓度和探测波长对红外偏振光传输特性的影响. 研究结果表明: 本文研究方法和HITRAN库关于辐亮度透过率的计算结果误差基本保持在2%以内; 随着距离增大, 温度和压强对光波偏振辐射传输特性的影响更为显著. 压强与透过率和偏振度呈负相关, 温度的影响与气体的类型、温度范围等因素有关; 辐亮度透过率和偏振度与尾焰空间气体的吸收系数和传输距离呈指数衰减关系; 探测波长不同, 光波的偏振辐射传输特性也存在差异.
    Infrared polarization radiation of aircraft targets after transmission through high-temperature exhaust plumes is an important basis for infrared detection equipment to detect, identify, track and warn aircraft. At present, most of the studies on the transmission characteristics of gas polarized radiation focus on the visible wavelength band, and the research object is mainly the atmospheric environment. The study of infrared polarization radiation transmission characteristics in the special gas environment of high-temperature exhaust plume is still insufficient. In this paper, the Monte Carlo method is used to model the transmission of infrared polarized light in a high-temperature exhaust plume, and the absorption coefficients of H2O in 2.5~3.3 μm band and CO2 in 4~5 μm band are calculated by using the HITRAN database. The multiple scattering process of photons in the exhaust plume space is simulated, and the changes of the cosine of motion and cosine of vibration of the photons in the collision events are analyzed at the microscopic level. Also, the photon characteristics are statistically analyzed based on the principles of the calculation of polarization and transmittance. Based on the simulation results, the changes of radiative transmittance and polarization at different transmission distances are compared, and the effects of exhaust plume temperature, pressure, gas component concentration and detection wavelength on the transmission characteristics of infrared polarized light are analyzed as well. The experimental results prove that the error between the calculated radiative transmittance in this study and the HITRAN database is basically within 2%. The effects of temperature and pressure on the transmission characteristics of polarized light become more and more significant as the distance increases. Pressure is negatively correlated with transmittance and polarization, while the effect of temperature is related to gas type and temperature range. Radiant transmittance and polarization decay exponentially with the absorption coefficient of the gas in the exhaust plume space as well as with the transmission distance. Different detection wavelengths also lead to differences in polarized light transmission characteristics.
  • 图 1  Monte Carlo模拟中光子在尾焰空间的随机运动过程示意图

    Fig. 1.  Schematic diagram of the random motion process of photons in the tail flame space in Monte Carlo simulation.

    图 2  Monte Carlo法基本流程图

    Fig. 2.  Basic flowchart of Monte Carlo method.

    图 3  光子初始位置和初始方向示意图 (a)光子初始位置; (b)光子初始方向

    Fig. 3.  Schematic diagram of initial position and direction of photons: (a) Initial position of photons; (b) Initial direction of photons.

    图 4  散射过程角度变化示意图

    Fig. 4.  Schematic diagram of angle variation during scattering process.

    图 5  本模型与HITRAN库关于辐亮度透过率的计算结果对比

    Fig. 5.  Comparison of the calculation results of radiance transmittance between the model in this article and the HITRAN library.

    图 6  传输距离变化对不同温度尾焰空间的传输特性的影响 (a)透过率; (b)偏振度

    Fig. 6.  The influence of transmission distance variation on the transmission characteristics of different temperature tail flame spaces: (a) Transmittance; (b) Polarization Degree.

    图 7  传输距离变化对不同压强尾焰空间的传输特性的影响 (a)透过率; (b)偏振度

    Fig. 7.  The influence of transmission distance variation on the transmission characteristics of different pressure tail flame spaces: (a) Transmittance; (b) Polarization Degree.

    图 8  传输距离变化对不同气体组分尾焰空间的传输特性的影响 (a) H2O透过率; (b) H2O偏振度; (c) CO2透过率; (d) CO2偏振度

    Fig. 8.  The influence of transmission distance variation on the transmission characteristics of different gas components in the tail flame space: (a) H2O Transmittance; (b) H2O Polarization Degree; (c) CO2 Transmittance; (d) CO2 Polarization Degree.

    图 9  波长变化对不同气体组分尾焰空间的传输特性的影响 (a) H2O透过率; (b) H2O偏振度; (c) CO2透过率; (d) CO2偏振度

    Fig. 9.  The influence of wavelength variation on the transmission characteristics of different gas components in the tail flame space: (a) H2O Transmittance; (b) H2O Polarization Degree; (c) CO2· Transmittance; (d) CO2 Polarization Degree.

  • [1]

    Xin W, Zhong W H, Shi Y J, Shi Y M, Jing J W, Xu T F, Guo J X, Liu W Z, Li Y Z, Liang Z Z, Xin X, Cheng J L, Hu W D, Xu H Y, Liu Y C 2024 Adv. Mater. 36 2306772Google Scholar

    [2]

    Zhong F, Wang H, Wang Z, Wang Y, He T, Wu P S, Peng M, Wang H L, Xu T F, Wang F, Wang P, Miao J S, Hu W D 2021 Nano Res. 14 1840Google Scholar

    [3]

    Tong L, Huang X Y, Wang P, Ye L, Peng M, An L C, Sun Q D, Zhang Y, Yang G M, Li Z, Zhong F, Wang F, Wang Y X, Motlag M, Wu W Z, Cheng G J, Hu W D 2020 Nat. Commun. 11 2308Google Scholar

    [4]

    甄玉冉, 邓杰, 布勇浩, 代旭, 余宇, 石梦碟, 王若文, 叶韬, 陈刚, 周靖 2023 红外与毫米波学报 43 52

    Zhen Y R, Deng J, Bu Y H, Dai X, Yu Y, Shi M D, Wang R W, Ye T, Chen G, Zhou J 2023 J. Infrared Millim. Waves 43 52

    [5]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [6]

    郑海晶, 白廷柱, 王全喜 2018 光子学报 47 162

    Zheng H J, Bai T Z, Wang Q X 2018 Acta Photonica Sin. 47 162

    [7]

    王子谦, 张旭东, 金海红, 范之国 2014 中国激光 41 213

    Wang Z Q, Zhang X D, Jin H H, Fan Z G 2014 Chin. J. Lasers 41 213

    [8]

    王威, 褚金奎, 崔岩, 支炜, 陈辰 2013 中国激光 40 513001Google Scholar

    Wang W, Chu J K, Cui Y, Zhi W, Chen C 2013 Chin. J. Lasers 40 513001Google Scholar

    [9]

    提汝芳, 孙晓兵, 李树, 陈震霆 2018 红外与激光工程 47 1111001Google Scholar

    Ti R F, Sun X B, Li S, Chen Z T 2018 Infrared Laser Eng. 47 1111001Google Scholar

    [10]

    Pust N J, Shaw J A 2012 Opt. Express 20 15559Google Scholar

    [11]

    胡帅, 高太长, 刘磊, 易红亮, 贲勋 2015 物理学报 64 034204Google Scholar

    Hu S, Gao T C, Liu L, Yi H L, Ben X 2015 Acta Phys. Sin. 64 034204Google Scholar

    [12]

    van der Laan J D, Wright J B, Kemme S A, Scrymgeour D A 2018 Appl. Opt. 57 5464Google Scholar

    [13]

    Wang K P 2019 M. S. Thesis (Hefei: Hefei University Of Technology) (in Chinses) [王开鹏 2019 硕士学位论文 (合肥: 合肥工业大学)]

    Wang K P 2019 M. S. Thesis (Hefei: Hefei University Of Technology) (in Chinses)

    [14]

    张肃, 战俊彤, 白思克, 付强, 段锦, 姜会林 2016 光学学报 36 729001Google Scholar

    Zhang S, Zhan J T, Bai S K, Fu Q, Duan J, Jiang H L 2016 Acta Optica Sin. 36 729001Google Scholar

    [15]

    曾祥伟, 张燕, 杨钧秀 2023 光学学报 43 1829001Google Scholar

    Zeng X W, Zhang Y, Yang J X 2023 Acta Optica Sin. 43 1829001Google Scholar

    [16]

    吴琼, 王博, 王涛, 朱仁江, 张鹏, 汪丽杰 2021 光子学报 50 0406002

    Wu Q, Wang B, Wang T, Zhu R J, Zhang P, Wang L J 2021 Acta Photonica Sin. 50 0406002

    [17]

    刘丹丹, 黄印博, 戴聪明, 魏合理, 饶瑞中 2013 红外与激光工程 42 1776Google Scholar

    Liu D D, Huang Y B, Dai C M, Wei H L, Rao R Z 2013 Infrared Laser Eng. 42 1776Google Scholar

    [18]

    崔洪鲁, 闫召爱, 张炳炎, 郭文杰, 胡雄 2020 空间科学学报 40 1046Google Scholar

    Cui H L, Yan Z A, Zhang B Y, Guo W J, Hu X 2020 Chin. J. Space Sci. 40 1046Google Scholar

    [19]

    Hopcraft K, Chang P, Walker J, Jakeman E 2000 In Light Scattering from Microstructures: Lectures of the Summer School of Laredo, University of Cantabria, Held at Laredo, Spain, Sept. 11–13, 1998 (Berlin: Springer), pp 135–158

    [20]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420Google Scholar

    [21]

    Whitney B A 2011 In Fluid Flows To Black Holes: A Tribute to S Chandrasekhar on His Birth Centenary (Singapore: World Scientific), pp 151–176

    [22]

    云玉新, 吕天光, 韩洪, 王泽众, 姚金霞, 李秀卫, 赵笑笑 2011 红外与激光工程 40 992Google Scholar

    Yun Y X, Lv T G, Han H, Wang Z Z, Yao J X, Li X W, Zhao X X 2011 Infrared Laser Eng. 40 992Google Scholar

    [23]

    郑海晶, 白廷柱, 王全喜, 曹峰梅 2017 光学学报 37 0726001Google Scholar

    Zheng H J, Bai T Z, Wang Q X, Cao F M 2017 Acta Optica Sin. 37 0726001Google Scholar

  • [1] 章其林, 王瑞丰, 周同, 王允杰, 刘琪. 一维有序单链水红外吸收光谱的分子动力学模拟. 物理学报, doi: 10.7498/aps.72.20222031
    [2] 梁铭辉, 郑飞虎, 安振连, 张冶文. 基于Monte Carlo的热脉冲法数据分析. 物理学报, doi: 10.7498/aps.65.077702
    [3] 胡帅, 高太长, 刘磊, 易红亮, 贲勋. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真. 物理学报, doi: 10.7498/aps.64.094201
    [4] 吴庚坤, 姬光荣, 姬婷婷, 任红霞. 基于文氏改进谱的二维粗糙海面模型及其电磁散射研究. 物理学报, doi: 10.7498/aps.63.134203
    [5] 吕金光, 梁静秋, 梁中翥. 多级反射镜阵列Monte Carlo法误差合成与统计分析. 物理学报, doi: 10.7498/aps.61.220701
    [6] 魏雅娜, 杨世平. 分子核间距对非时序双电离的影响. 物理学报, doi: 10.7498/aps.59.7298
    [7] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.58.2397
    [8] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究. 物理学报, doi: 10.7498/aps.58.4987
    [9] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, doi: 10.7498/aps.57.3853
    [10] 郝 楠, 周 斌, 陈立民. 利用差分吸收光谱法测量亚硝酸和反演气溶胶参数. 物理学报, doi: 10.7498/aps.55.1529
    [11] 赖天树, 刘鲁宁, 雷 亮, 寿 倩, 李熙莹, 王嘉辉, 林位株. 电子自旋偏振度及其弛豫过程的飞秒激光吸收光谱研究. 物理学报, doi: 10.7498/aps.54.967
    [12] 张海涛, 崔瑞祯, 王东生, 闫 平, 陈 刚, 柳 强. 基于Phong模式的分裂Monte Carlo模拟红外室内信道脉冲响应函数. 物理学报, doi: 10.7498/aps.54.3610
    [13] 王 凌, 徐之海, 冯华君. 多分散高浓度介质偏振光后向扩散散射的Monte Carlo仿真. 物理学报, doi: 10.7498/aps.54.2694
    [14] 劳燕锋, 吴惠桢. 直接键合InP-GaAs结构界面的特性研究. 物理学报, doi: 10.7498/aps.54.4334
    [15] 齐 锋, 刘文清, 周 斌, 李振壁, 崔延军. 对差分光学吸收光谱法的监测数据进行实时预测研究. 物理学报, doi: 10.7498/aps.52.1307
    [16] 许圣华, 辛 煜, 宁兆元, 程珊华, 黄 松, 陆新华, 项苏留, 陈 军. ECR-CVD制备的非晶SiOxNy薄膜的光致蓝光发射. 物理学报, doi: 10.7498/aps.52.1287
    [17] 辛煜, 宁兆元, 程珊华, 陆新华, 江美福, 许圣华, 叶超, 黄松, 杜伟. 源气体对沉积的a-C∶F∶H薄膜结构的影响. 物理学报, doi: 10.7498/aps.51.1865
    [18] 辛煜, 宁兆元, 程珊华, 陆新华, 甘肇强, 黄松. ECR-CVD法制备的a-C:F:H薄膜在N2气氛中的热退火研究. 物理学报, doi: 10.7498/aps.51.439
    [19] 周斌, 刘文清, 齐峰, 李振壁, 崔延军. 差分吸收光谱法测量大气污染的浓度反演方法研究. 物理学报, doi: 10.7498/aps.50.1818
    [20] 张合义, 谭国英. LiYF4晶体中Er3+的偏振吸收光谱及其量子态. 物理学报, doi: 10.7498/aps.32.1204
计量
  • 文章访问数:  287
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-13
  • 修回日期:  2025-03-12
  • 上网日期:  2025-03-26

/

返回文章
返回