搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子热电池中热导调控的研究进展与展望

刘利利 张鼎 马儒军

引用本文:
Citation:

离子热电池中热导调控的研究进展与展望

刘利利, 张鼎, 马儒军

Research Progress and Perspectives on Thermal Conductivity Regulation in Ionic Thermocells

Liu Lili, Zhang Ding, Ma Rujun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,随着人类对可持续能源技术需求的不断增长,离子热电池作为实现热能与电能直接转换的关键技术,在低品位热能回收与利用领域日益受到关注。在关键性能参数中,有效热导率(κeff)对维持热电池内部温度梯度和提高热电池整体能量转换效率具有重要的作用。然而,与广泛研究的热功率(Stg)和电导率(σ)相比,κeff的系统性研究仍较薄弱。本综述系统研究了离子热电池中热导调控的最新进展,重点分析电极材料、电解质组成及器件结构设计对热传导行为的影响机制。结合典型的材料设计和结构工程策略,探讨热传导在热电性能提升中的作用,全面总结当前该领域的研究成果。最后,展望材料优化、界面工程与热导表征等未来研究方向,旨在为高性能热电池的设计提供理论基础和技术支撑。
    With the growing demand for sustainable energy technologies, ionic thermocells have attracted increasing attention for their potential in harvesting low-grade heat through direct thermal-to-electric energy conversion. Among the key performance metrics, the effective thermal conductivity (κeff) plays a crucial role in maintaining internal temperature gradients and enhancing overall energy conversion efficiency of thermocells. However, compared to the extensively studied thermopower (Stg) and electrical conductivity (σ), κeff has received relatively little systematic attention. This review summarizes recent advances in the regulation of thermal conductivity in ionic thermocells, focusing on its crucial role in thermoelectric performance. We discuss the influence of electrode materials, electrolyte compositions, and device architectures on heat transport, and highlight representative strategies involving materials engineering and structural design to optimize the synergy between thermal conduction and ionic conduction. Finally, we outline future directions such as material optimization, interface engineering, and improved thermal characterization techniques, to facilitate the development of next-generation high-performance thermocells.
  • [1]

    Abramovitz A, Shmilovitz D 2021Energies 144917

    [2]

    Ansu-Mensah P, Bein M A 2019Nat. Resour. Forum 43 181

    [3]

    Iqbal S, Wang Y, Shaikh P A, Maqbool A, Hayat K 2022Environ. Sci. Pollut. Res. 29 7067

    [4]

    Hosseini S E, Wahid M A 2016Renew. Sustain. Energy Rev. 57 850

    [5]

    Shenkoya T 2020Internet of Things 11100250

    [6]

    Mufutau Opeyemi B 2021Energy 228 120519

    [7]

    Liu X, Elgowainy A, Wang M 2020Green Chem. 22 5751

    [8]

    Wu J, Black J J, Aldous L 2017Electrochim. Acta 225 482

    [9]

    Liu Y, Wang H, Sherrell P C, Liu L, Wang Y, Chen J 2021Adv. Sci. 8 2100669

    [10]

    Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H 2019Adv. Funct. Mater. 29 1900304

    [11]

    Núñez C G, Navaraj W T, Polat E O, Dahiya R 2017Adv. Funct. Mater. 271606287

    [12]

    Hendricks T J 2019MRS Adv. 4 457

    [13]

    Zhang L, Shi X L, Yang Y L, Chen Z G 2021Mater. Today 46 62

    [14]

    Han C G, Qian X, Li Q, Deng B, Zhu Y, Han Z, Zhang W, Wang W, Feng S P, Chen G, Liu W 2020Science 368 1091

    [15]

    Yang P H, Liu K, Chen Q, Mo X B, Zhou Y S, Li S, Feng G, Zhou J 2016Angew. Chem. Int. Ed. 55 12050

    [16]

    Burmistrov I, Khanna R, Gorshkov N, Kiselev N, Artyukhov D, Boychenko E, Yudin A, Konyukhov Y, Kravchenko M, Gorokhovsky A, Kuznetsov D 2022Sustain. 14 9483

    [17]

    Battistel A, Peljo P 2021Curr. Opin. Electrochem. 30 100853

    [18]

    Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019Energy Environ. Sci. 12 2983

    [19]

    Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R, Rogers J A 2019Chem. Rev. 119 5461

    [20]

    Ao D W, Liu W D, Zheng Z H, Shi X L, Wei M, Zhong Y M, Li M, Liang G X, Fan P, Chen Z G 2022Adv. Energy Mater. 12 2202731

    [21]

    Cao T, Shi X L, Li M, Hu B, Chen W, Liu W Di, Lyu W, MacLeod J, Chen Z G 2023eScience 3 100122

    [22]

    Ohno H, Ikhlayel M, Tamura M, Nakao K, Suzuki K, Morita K, Kato Y, Tomishige K, Fukushima Y 2021Green Chem. 23 457

    [23]

    Moioli E, Schildhauer T 2022Renew. Sustain. Energy Rev. 158 112120

    [24]

    Baliban R C, Elia J A, Weekman V, Floudas C A 2012Comput. Chem. Eng. 47 29

    [25]

    Villarroel-Schneider J, Höglund-Isaksson L, Mainali B, Martí-Herrero J, Cardozo E, Malmquist A, Martin A 2022Energy Convers. Manag. 261115670

    [26]

    He W, Li S, Bai P, Zhang D, Feng L, Wang L, Fu X, Cui H, Ji X, Ma R 2022Nano Energy 96 107109

    [27]

    Jin H, Li J, Iocozzia J, Zeng X, Wei P C, Yang C, Li N, Liu Z, He J H, Zhu T, Wang J, Lin Z, Wang S 2019Angew. Chem. Int. Ed. 58 15206

    [28]

    Yu B, Xiao H, Zeng Y, Liu S, Wu D, Liu P, Guo J, Xie W, Duan J, Zhou J 2022Nano Energy 93 106795

    [29]

    Duan J, Feng G, Yu B, Li J, Chen M, Yang P, Feng J, Liu K, Zhou J 2018Nat. Commun. 9 5146

    [30]

    Wang S, Li Y, Yu M, Li Q, Li H, Wang Y, Zhang J, Zhu K, Liu W 2024Nat. Commun. 151172

    [31]

    Han H, Zhao L, Wu X, Zuo B, Bian S, Li T, Liu X, Jiang Y, Chen C, Bi J, Xu J, Yu L 2024J. Mater. Chem. A. 12 24041

    [32]

    Jin L, Greene G W, MacFarlane D R, Pringle J M 2016ACS Energy Lett. 1654

    [33]

    Liu L, Zhang D, Bai P, Mao Y, Li Q, Guo J, Fang Y, Ma R 2023Adv. Mater. 35 2300696

    [34]

    Liu Y, Cui M, Ling W, Cheng L, Lei H, Li W, Huang Y 2022Energy Environ. Sci. 15 3670

    [35]

    Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q 2025Nat. Commun. 1616932

    [36]

    Duan J, Yu B, Huang L, Hu B, Xu M, Feng G, Zhou J 2021Joule 5 768

    [37]

    Qian X, Ma Z, Huang Q, Jiang H, Yang R 2024ACS Energy Lett. 9679

    [38]

    Zhang H, Lek D G, Huang S, Lee Y M, Wang Q 2022Adv. Mater. 34 2202266

    [39]

    He X, Sun H, Li Z, Chen X, Wang Z, Niu Y, Jiang J, Wang C 2022J. Mater. Chem. A 10 20730

    [40]

    Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X 2023Micromachines 14155

    [41]

    Bai C, Li X, Cui X, Yang X, Zhang X, Yang K, Wang T, Zhang H 2022Nano Energy 100107449

    [42]

    Zhao Y, Fu X, Liu B, Sun J, Zhuang Z, Yang P, Zhong J, Liu K 2023Sci. China Mater. 66 1934

    [43]

    Liu X, Wang T, Ye H, Nan W, Chen M, Fang J, Fan F R 2024EcoEnergy 2 478

    [44]

    Kao S T, Hsu C C, Hong S H, Jeng U S, Wang C H, Tung S H, Liu C L 2025Adv. Energy Mater. 15 2405502

    [45]

    Bai C, Wang Z, Yang S, Cui X, Li X, Yin Y, Zhang M, Wang T, Sang S, Zhang W 2021ACS Appl. Mater. Interfaces 13 37316

    [46]

    Kim K, Hwang S, Lee H 2020Electrochim. Acta 335 135651

    [47]

    Dupont M F, MacFarlane D R, Pringle J M 2017Chem. Commun. 53 6288

    [48]

    Li Y, Li Q, Zhang X, Deng B, Han C, Liu W 2022Adv. Energy Mater. 12 2103666

    [49]

    Hu R, Cola B A, Haram N, Barisci J N, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, Dela Cruz M E, Ferraris J P, Zakhidov A A, Baughman R H 2010Nano Lett. 10 838

    [50]

    Zhang L, Kim T, Li N, Kang T J, Chen J, Pringle J M, Zhang M, Kazim A H, Fang S, Haines C, Al-Masri D, Cola B A, Razal J M, Di J, Beirne S, MacFarlane D R, Gonzalez-Martin A, Mathew S, Kim Y H, Wallace G, Baughman R H 2017Adv. Mater. 29 1605652

    [51]

    Im H, Kim T, Song H, Choi J, Park J S, Ovalle-Robles R, Yang H D, Kihm K D, Baughman R H, Lee H H, Kang T J, Kim Y H 2016Nat. Commun. 7 10600

    [52]

    Zhou Y, Qian W, Huang W, Liu B, Lin H, Dong C 2019Nanomaterials 9 7

    [53]

    Shpekina V, Burmistrov I, Gorshkov N, Artyukhov D, Kiselev N, Kovyneva N, Smirnova Y 2019IOP Conf. Ser. Mater. Sci. Eng. 693012028

    [54]

    Yu B, Duan J, Cong H, Xie W, Liu R, Zhuang X, Wang H, Qi B, Xu M, Wang Z L, Zhou J 2020Science 370 342

    [55]

    Zhang D, Mao Y, Ye F, Li Q, Bai P, He W, Ma R 2022Energy Environ. Sci. 15 2974

    [56]

    Lei Z, Gao W, Wu P 2021Joule 5 2211

    [57]

    Zhou Y, Zhang D, Zhang S, Liu Y, Ma R, Wallace G, Chen J 2024SusMat 4 e225

    [58]

    Zhao J, Wu X, Yu H, Wang Y, Wu P, Yang X, Chu D, Owens G, Xu H 2023EcoMat 5 e12302

    [59]

    Mo Z, Wei S, Xie D, Zhu K, Li H, Lu X, Liang L, Du C, Liu Z, Chen G 2024Sci. China Chem. 67 1672

  • [1] 李昊, 周晶晶, 孙琪, 陈文, 周静. 基于多模态谐振的宽频雨水压电俘能器设计. 物理学报, doi: 10.7498/aps.74.20250213
    [2] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理. 物理学报, doi: 10.7498/aps.73.20230708
    [3] 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析. 物理学报, doi: 10.7498/aps.71.20220212
    [4] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.70.20202020
    [5] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, doi: 10.7498/aps.70.20200741
    [6] 王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能. 物理学报, doi: 10.7498/aps.70.20201802
    [7] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前. Ag@SiO2耦合结构设计及其对薄膜太阳电池的响应调控. 物理学报, doi: 10.7498/aps.69.20200334
    [8] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, doi: 10.7498/aps.69.20191891
    [9] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化. 物理学报, doi: 10.7498/aps.68.20191161
    [10] 庄新港, 刘红博, 张鹏举, 史学舜, 刘长明, 刘红元, 王恒飞. 低温辐射计热结构设计与分析. 物理学报, doi: 10.7498/aps.68.20181880
    [11] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, doi: 10.7498/aps.67.20181355
    [12] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, doi: 10.7498/aps.64.224401
    [13] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化. 物理学报, doi: 10.7498/aps.64.107802
    [14] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, doi: 10.7498/aps.63.198802
    [15] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, doi: 10.7498/aps.62.098201
    [16] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, doi: 10.7498/aps.62.084206
    [17] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣. 十字环型左手材料单元结构设计与仿真. 物理学报, doi: 10.7498/aps.61.164101
    [18] 周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰. 非晶硅光伏电池表面高效光陷阱结构设计. 物理学报, doi: 10.7498/aps.60.088802
    [19] 郭云胜, 张雪峰. 一种结构简单的二维左手材料设计及仿真研究. 物理学报, doi: 10.7498/aps.59.8584
    [20] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, doi: 10.7498/aps.58.4041
计量
  • 文章访问数:  82
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-01

/

返回文章
返回