-
近年来,随着人类对可持续能源技术需求的不断增长,离子热电池作为实现热能与电能直接转换的关键技术,在低品位热能回收与利用领域日益受到关注。在关键性能参数中,有效热导率(κeff)对维持热电池内部温度梯度和提高热电池整体能量转换效率具有重要的作用。然而,与广泛研究的热功率(Stg)和电导率(σ)相比,κeff的系统性研究仍较薄弱。本综述系统研究了离子热电池中热导调控的最新进展,重点分析电极材料、电解质组成及器件结构设计对热传导行为的影响机制。结合典型的材料设计和结构工程策略,探讨热传导在热电性能提升中的作用,全面总结当前该领域的研究成果。最后,展望材料优化、界面工程与热导表征等未来研究方向,旨在为高性能热电池的设计提供理论基础和技术支撑。With the growing demand for sustainable energy technologies, ionic thermocells have attracted increasing attention for their potential in harvesting low-grade heat through direct thermal-to-electric energy conversion. Among the key performance metrics, the effective thermal conductivity (κeff) plays a crucial role in maintaining internal temperature gradients and enhancing overall energy conversion efficiency of thermocells. However, compared to the extensively studied thermopower (Stg) and electrical conductivity (σ), κeff has received relatively little systematic attention. This review summarizes recent advances in the regulation of thermal conductivity in ionic thermocells, focusing on its crucial role in thermoelectric performance. We discuss the influence of electrode materials, electrolyte compositions, and device architectures on heat transport, and highlight representative strategies involving materials engineering and structural design to optimize the synergy between thermal conduction and ionic conduction. Finally, we outline future directions such as material optimization, interface engineering, and improved thermal characterization techniques, to facilitate the development of next-generation high-performance thermocells.
-
Keywords:
- Ionic thermocell /
- thermal conductivity performance /
- material optimization /
- structural design
-
[1] Abramovitz A, Shmilovitz D 2021Energies 144917
[2] Ansu-Mensah P, Bein M A 2019Nat. Resour. Forum 43 181
[3] Iqbal S, Wang Y, Shaikh P A, Maqbool A, Hayat K 2022Environ. Sci. Pollut. Res. 29 7067
[4] Hosseini S E, Wahid M A 2016Renew. Sustain. Energy Rev. 57 850
[5] Shenkoya T 2020Internet of Things 11100250
[6] Mufutau Opeyemi B 2021Energy 228 120519
[7] Liu X, Elgowainy A, Wang M 2020Green Chem. 22 5751
[8] Wu J, Black J J, Aldous L 2017Electrochim. Acta 225 482
[9] Liu Y, Wang H, Sherrell P C, Liu L, Wang Y, Chen J 2021Adv. Sci. 8 2100669
[10] Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H 2019Adv. Funct. Mater. 29 1900304
[11] Núñez C G, Navaraj W T, Polat E O, Dahiya R 2017Adv. Funct. Mater. 271606287
[12] Hendricks T J 2019MRS Adv. 4 457
[13] Zhang L, Shi X L, Yang Y L, Chen Z G 2021Mater. Today 46 62
[14] Han C G, Qian X, Li Q, Deng B, Zhu Y, Han Z, Zhang W, Wang W, Feng S P, Chen G, Liu W 2020Science 368 1091
[15] Yang P H, Liu K, Chen Q, Mo X B, Zhou Y S, Li S, Feng G, Zhou J 2016Angew. Chem. Int. Ed. 55 12050
[16] Burmistrov I, Khanna R, Gorshkov N, Kiselev N, Artyukhov D, Boychenko E, Yudin A, Konyukhov Y, Kravchenko M, Gorokhovsky A, Kuznetsov D 2022Sustain. 14 9483
[17] Battistel A, Peljo P 2021Curr. Opin. Electrochem. 30 100853
[18] Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019Energy Environ. Sci. 12 2983
[19] Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R, Rogers J A 2019Chem. Rev. 119 5461
[20] Ao D W, Liu W D, Zheng Z H, Shi X L, Wei M, Zhong Y M, Li M, Liang G X, Fan P, Chen Z G 2022Adv. Energy Mater. 12 2202731
[21] Cao T, Shi X L, Li M, Hu B, Chen W, Liu W Di, Lyu W, MacLeod J, Chen Z G 2023eScience 3 100122
[22] Ohno H, Ikhlayel M, Tamura M, Nakao K, Suzuki K, Morita K, Kato Y, Tomishige K, Fukushima Y 2021Green Chem. 23 457
[23] Moioli E, Schildhauer T 2022Renew. Sustain. Energy Rev. 158 112120
[24] Baliban R C, Elia J A, Weekman V, Floudas C A 2012Comput. Chem. Eng. 47 29
[25] Villarroel-Schneider J, Höglund-Isaksson L, Mainali B, Martí-Herrero J, Cardozo E, Malmquist A, Martin A 2022Energy Convers. Manag. 261115670
[26] He W, Li S, Bai P, Zhang D, Feng L, Wang L, Fu X, Cui H, Ji X, Ma R 2022Nano Energy 96 107109
[27] Jin H, Li J, Iocozzia J, Zeng X, Wei P C, Yang C, Li N, Liu Z, He J H, Zhu T, Wang J, Lin Z, Wang S 2019Angew. Chem. Int. Ed. 58 15206
[28] Yu B, Xiao H, Zeng Y, Liu S, Wu D, Liu P, Guo J, Xie W, Duan J, Zhou J 2022Nano Energy 93 106795
[29] Duan J, Feng G, Yu B, Li J, Chen M, Yang P, Feng J, Liu K, Zhou J 2018Nat. Commun. 9 5146
[30] Wang S, Li Y, Yu M, Li Q, Li H, Wang Y, Zhang J, Zhu K, Liu W 2024Nat. Commun. 151172
[31] Han H, Zhao L, Wu X, Zuo B, Bian S, Li T, Liu X, Jiang Y, Chen C, Bi J, Xu J, Yu L 2024J. Mater. Chem. A. 12 24041
[32] Jin L, Greene G W, MacFarlane D R, Pringle J M 2016ACS Energy Lett. 1654
[33] Liu L, Zhang D, Bai P, Mao Y, Li Q, Guo J, Fang Y, Ma R 2023Adv. Mater. 35 2300696
[34] Liu Y, Cui M, Ling W, Cheng L, Lei H, Li W, Huang Y 2022Energy Environ. Sci. 15 3670
[35] Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q 2025Nat. Commun. 1616932
[36] Duan J, Yu B, Huang L, Hu B, Xu M, Feng G, Zhou J 2021Joule 5 768
[37] Qian X, Ma Z, Huang Q, Jiang H, Yang R 2024ACS Energy Lett. 9679
[38] Zhang H, Lek D G, Huang S, Lee Y M, Wang Q 2022Adv. Mater. 34 2202266
[39] He X, Sun H, Li Z, Chen X, Wang Z, Niu Y, Jiang J, Wang C 2022J. Mater. Chem. A 10 20730
[40] Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X 2023Micromachines 14155
[41] Bai C, Li X, Cui X, Yang X, Zhang X, Yang K, Wang T, Zhang H 2022Nano Energy 100107449
[42] Zhao Y, Fu X, Liu B, Sun J, Zhuang Z, Yang P, Zhong J, Liu K 2023Sci. China Mater. 66 1934
[43] Liu X, Wang T, Ye H, Nan W, Chen M, Fang J, Fan F R 2024EcoEnergy 2 478
[44] Kao S T, Hsu C C, Hong S H, Jeng U S, Wang C H, Tung S H, Liu C L 2025Adv. Energy Mater. 15 2405502
[45] Bai C, Wang Z, Yang S, Cui X, Li X, Yin Y, Zhang M, Wang T, Sang S, Zhang W 2021ACS Appl. Mater. Interfaces 13 37316
[46] Kim K, Hwang S, Lee H 2020Electrochim. Acta 335 135651
[47] Dupont M F, MacFarlane D R, Pringle J M 2017Chem. Commun. 53 6288
[48] Li Y, Li Q, Zhang X, Deng B, Han C, Liu W 2022Adv. Energy Mater. 12 2103666
[49] Hu R, Cola B A, Haram N, Barisci J N, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, Dela Cruz M E, Ferraris J P, Zakhidov A A, Baughman R H 2010Nano Lett. 10 838
[50] Zhang L, Kim T, Li N, Kang T J, Chen J, Pringle J M, Zhang M, Kazim A H, Fang S, Haines C, Al-Masri D, Cola B A, Razal J M, Di J, Beirne S, MacFarlane D R, Gonzalez-Martin A, Mathew S, Kim Y H, Wallace G, Baughman R H 2017Adv. Mater. 29 1605652
[51] Im H, Kim T, Song H, Choi J, Park J S, Ovalle-Robles R, Yang H D, Kihm K D, Baughman R H, Lee H H, Kang T J, Kim Y H 2016Nat. Commun. 7 10600
[52] Zhou Y, Qian W, Huang W, Liu B, Lin H, Dong C 2019Nanomaterials 9 7
[53] Shpekina V, Burmistrov I, Gorshkov N, Artyukhov D, Kiselev N, Kovyneva N, Smirnova Y 2019IOP Conf. Ser. Mater. Sci. Eng. 693012028
[54] Yu B, Duan J, Cong H, Xie W, Liu R, Zhuang X, Wang H, Qi B, Xu M, Wang Z L, Zhou J 2020Science 370 342
[55] Zhang D, Mao Y, Ye F, Li Q, Bai P, He W, Ma R 2022Energy Environ. Sci. 15 2974
[56] Lei Z, Gao W, Wu P 2021Joule 5 2211
[57] Zhou Y, Zhang D, Zhang S, Liu Y, Ma R, Wallace G, Chen J 2024SusMat 4 e225
[58] Zhao J, Wu X, Yu H, Wang Y, Wu P, Yang X, Chu D, Owens G, Xu H 2023EcoMat 5 e12302
[59] Mo Z, Wei S, Xie D, Zhu K, Li H, Lu X, Liang L, Du C, Liu Z, Chen G 2024Sci. China Chem. 67 1672
计量
- 文章访问数: 82
- PDF下载量: 9
- 被引次数: 0