搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子热电池中热导调控的研究进展与展望

刘利利 张鼎 马儒军

引用本文:
Citation:

离子热电池中热导调控的研究进展与展望

刘利利, 张鼎, 马儒军
cstr: 32037.14.aps.74.20250503

Research progress and perspects of thermal conductivity regulation in ionic thermocells

LIU Lili, ZHANG Ding, MA Rujun
cstr: 32037.14.aps.74.20250503
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 随着人类对可持续能源技术需求的不断增长, 离子热电池作为实现热能与电能直接转换的关键技术, 在低品位热能回收与利用领域日益受到关注. 在关键性能参数中, 有效热导率(κeff)对维持热电池内部温度梯度和提高热电池整体能量转换效率具有重要的作用. 然而, 与广泛研究的热功率(Stg)和电导率(σ)相比, κeff的系统性研究仍较薄弱. 本综述系统地总结了离子热电池中热导调控的最新进展, 重点分析电极材料、电解质组成及器件结构设计对热传导行为的影响机制. 结合典型的材料设计和结构工程策略, 探讨热传导在热电性能提升中的作用, 全面总结当前该领域的研究成果. 最后, 展望材料优化、界面工程与热导表征等未来研究方向, 旨在为高性能热电池的设计提供理论基础和技术支撑.
    With the increasing demand for sustainable energy technologies, ionic thermocells are receiving more and more attention due to their potential to correct low-grade heat by directly converting thermal energy into electrical energy. Among the key performance indicators, the effective thermal conductivity (κeff) plays a crucial role in maintaining internal temperature gradients and enhancing overall energy conversion efficiency of thermocells. However, compared with the extensively studied thermopower (Stg) and electrical conductivity (σ), κeff has received less systematic attention. This review summarizes recent advances in the regulation of thermal conductivity in ionic thermocells, focusing on its crucial role in thermoelectric performance. We discuss the influences of electrode materials, electrolyte compositions, and device architectures on heat transport, and highlight representative strategies involving materials engineering and structural design to optimize the synergy between thermal conduction and ionic conduction. Finally, we outline future directions such as material optimization, interface engineering, and improved thermal characterization techniques to promote the development of next-generation high-performance thermocells.
      通信作者: 张鼎, zhangding@nankai.edu.cn ; 马儒军, malab@nankai.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0711500)、国家自然科学基金(批准号: 52473215, 52273248, 52303238)和天津市自然科学基金(批准号: S24JQU021)资助的课题.
      Corresponding author: ZHANG Ding, zhangding@nankai.edu.cn ; MA Rujun, malab@nankai.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0711500), the National Natural Science Foundation of China (Grant Nos. 52473215, 52273248, 52303238), and the Natural Science Foundation of Tianjin City, China (Grant No. S24JQU021).
    [1]

    Abramovitz A, Shmilovitz D 2021 Energies 14 4917Google Scholar

    [2]

    Ansu-Mensah P, Bein M A 2019 Nat. Resour. Forum 43 181Google Scholar

    [3]

    Iqbal S, Wang Y, Shaikh P A, Maqbool A, Hayat K 2022 Environ. Sci. Pollut. Res. 29 7067Google Scholar

    [4]

    Hosseini S E, Wahid M A 2016 Renewable Sustainable Energy Rev. 57 850Google Scholar

    [5]

    Shenkoya T 2020 Internet of Things 11 100250Google Scholar

    [6]

    Mufutau Opeyemi B 2021 Energy 228 120519Google Scholar

    [7]

    Liu X, Elgowainy A, Wang M 2020 Green Chem. 22 5751Google Scholar

    [8]

    Wu J, Black J J, Aldous L 2017 Electrochim. Acta 225 482Google Scholar

    [9]

    Liu Y, Wang H, Sherrell P C, Liu L, Wang Y, Chen J 2021 Adv. Sci. 8 2100669Google Scholar

    [10]

    Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H 2019 Adv. Funct. Mater. 29 1900304Google Scholar

    [11]

    Núñez C G, Navaraj W T, Polat E O, Dahiya R 2017 Adv. Funct. Mater. 27 1606287Google Scholar

    [12]

    Hendricks T J 2019 MRS Adv. 4 457Google Scholar

    [13]

    Zhang L, Shi X L, Yang Y L, Chen Z G 2021 Mater. Today 46 62Google Scholar

    [14]

    Han C G, Qian X, Li Q, Deng B, Zhu Y, Han Z, Zhang W, Wang W, Feng S P, Chen G, Liu W 2020 Science 368 1091Google Scholar

    [15]

    Yang P H, Liu K, Chen Q, Mo X B, Zhou Y S, Li S, Feng G, Zhou J 2016 Angew. Chem. Int. Ed. 55 12050Google Scholar

    [16]

    Burmistrov I, Khanna R, Gorshkov N, Kiselev N, Artyukhov D, Boychenko E, Yudin A, Konyukhov Y, Kravchenko M, Gorokhovsky A, Kuznetsov D 2022 Sustainability 14 9483Google Scholar

    [17]

    Battistel A, Peljo P 2021 Curr. Opin. Electrochem. 30 100853Google Scholar

    [18]

    Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019 Energy Environ. Sci. 12 2983Google Scholar

    [19]

    Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R, Rogers J A 2019 Chem. Rev. 119 5461Google Scholar

    [20]

    Ao D W, Liu W D, Zheng Z H, Shi X L, Wei M, Zhong Y M, Li M, Liang G X, Fan P, Chen Z G 2022 Adv. Energy Mater. 12 2202731Google Scholar

    [21]

    Cao T, Shi X L, Li M, Hu B, Chen W, Liu W Di, Lyu W, MacLeod J, Chen Z G 2023 eScience 3 100122Google Scholar

    [22]

    Ohno H, Ikhlayel M, Tamura M, Nakao K, Suzuki K, Morita K, Kato Y, Tomishige K, Fukushima Y 2021 Green Chem. 23 457Google Scholar

    [23]

    Moioli E, Schildhauer T 2022 Renewable Sustainable Energy Rev. 158 112120Google Scholar

    [24]

    Baliban R C, Elia J A, Weekman V, Floudas C A 2012 Comput. Chem. Eng. 47 29Google Scholar

    [25]

    Villarroel-Schneider J, Höglund-Isaksson L, Mainali B, Martí-Herrero J, Cardozo E, Malmquist A, Martin A 2022 Energy Convers. Manag. 261 115670Google Scholar

    [26]

    He W, Li S, Bai P, Zhang D, Feng L, Wang L, Fu X, Cui H, Ji X, Ma R 2022 Nano Energy 96 107109Google Scholar

    [27]

    Jin H, Li J, Iocozzia J, Zeng X, Wei P C, Yang C, Li N, Liu Z, He J H, Zhu T, Wang J, Lin Z, Wang S 2019 Angew. Chem. Int. Ed. 58 15206Google Scholar

    [28]

    Yu B, Xiao H, Zeng Y, Liu S, Wu D, Liu P, Guo J, Xie W, Duan J, Zhou J 2022 Nano Energy 93 106795Google Scholar

    [29]

    Duan J, Feng G, Yu B, Li J, Chen M, Yang P, Feng J, Liu K, Zhou J 2018 Nat. Commun. 9 5146Google Scholar

    [30]

    Wang S, Li Y, Yu M, Li Q, Li H, Wang Y, Zhang J, Zhu K, Liu W 2024 Nat. Commun. 15 1172Google Scholar

    [31]

    Han H, Zhao L, Wu X, Zuo B, Bian S, Li T, Liu X, Jiang Y, Chen C, Bi J, Xu J, Yu L 2024 J. Mater. Chem. A 12 24041Google Scholar

    [32]

    Jin L, Greene G W, MacFarlane D R, Pringle J M 2016 ACS Energy Lett. 1 654Google Scholar

    [33]

    Liu L, Zhang D, Bai P, Mao Y, Li Q, Guo J, Fang Y, Ma R 2023 Adv. Mater. 35 2300696Google Scholar

    [34]

    Liu Y, Cui M, Ling W, Cheng L, Lei H, Li W, Huang Y 2022 Energy Environ. Sci. 15 3670Google Scholar

    [35]

    Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q 2025 Nat. Commun. 16 16932

    [36]

    Duan J, Yu B, Huang L, Hu B, Xu M, Feng G, Zhou J 2021 Joule 5 768Google Scholar

    [37]

    Qian X, Ma Z, Huang Q, Jiang H, Yang R 2024 ACS Energy Lett. 9 679Google Scholar

    [38]

    Zhang H, Lek D G, Huang S, Lee Y M, Wang Q 2022 Adv. Mater. 34 2202266Google Scholar

    [39]

    He X, Sun H, Li Z, Chen X, Wang Z, Niu Y, Jiang J, Wang C 2022 J. Mater. Chem. A 10 20730Google Scholar

    [40]

    Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X 2023 Micromachines 14 155Google Scholar

    [41]

    Bai C, Li X, Cui X, Yang X, Zhang X, Yang K, Wang T, Zhang H 2022 Nano Energy 100 107449Google Scholar

    [42]

    Zhao Y, Fu X, Liu B, Sun J, Zhuang Z, Yang P, Zhong J, Liu K 2023 Sci. China Mater. 66 1934Google Scholar

    [43]

    Liu X, Wang T, Ye H, Nan W, Chen M, Fang J, Fan F R 2024 EcoEnergy 2 478Google Scholar

    [44]

    Kao S T, Hsu C C, Hong S H, Jeng U S, Wang C H, Tung S H, Liu C L 2025 Adv. Energy Mater. 15 2405502Google Scholar

    [45]

    Bai C, Wang Z, Yang S, Cui X, Li X, Yin Y, Zhang M, Wang T, Sang S, Zhang W 2021 ACS Appl. Mater. Interfaces 13 37316Google Scholar

    [46]

    Kim K, Hwang S, Lee H 2020 Electrochim. Acta 335 135651Google Scholar

    [47]

    Dupont M F, MacFarlane D R, Pringle J M 2017 Chem. Commun. 53 6288Google Scholar

    [48]

    Li Y, Li Q, Zhang X, Deng B, Han C, Liu W 2022 Adv. Energy Mater. 12 2103666Google Scholar

    [49]

    Hu R, Cola B A, Haram N, Barisci J N, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, Dela Cruz M E, Ferraris J P, Zakhidov A A, Baughman R H 2010 Nano Lett. 10 838Google Scholar

    [50]

    Zhang L, Kim T, Li N, Kang T J, Chen J, Pringle J M, Zhang M, Kazim A H, Fang S, Haines C, Al-Masri D, Cola B A, Razal J M, Di J, Beirne S, MacFarlane D R, Gonzalez-Martin A, Mathew S, Kim Y H, Wallace G, Baughman R H 2017 Adv. Mater. 29 1605652Google Scholar

    [51]

    Im H, Kim T, Song H, Choi J, Park J S, Ovalle-Robles R, Yang H D, Kihm K D, Baughman R H, Lee H H, Kang T J, Kim Y H 2016 Nat. Commun. 7 10600Google Scholar

    [52]

    Zhou Y, Qian W, Huang W, Liu B, Lin H, Dong C 2019 Nanomaterials 9 10Google Scholar

    [53]

    Shpekina V, Burmistrov I, Gorshkov N, Artyukhov D, Kiselev N, Kovyneva N, Smirnova Y 2019 IOP Conf. Ser. Mater. Sci. Eng. 693 012028Google Scholar

    [54]

    Yu B, Duan J, Cong H, Xie W, Liu R, Zhuang X, Wang H, Qi B, Xu M, Wang Z L, Zhou J 2020 Science 370 342Google Scholar

    [55]

    Zhang D, Mao Y, Ye F, Li Q, Bai P, He W, Ma R 2022 Energy Environ. Sci. 15 2974Google Scholar

    [56]

    Lei Z, Gao W, Wu P 2021 Joule 5 2211Google Scholar

    [57]

    Zhou Y, Zhang D, Zhang S, Liu Y, Ma R, Wallace G, Chen J 2024 SusMat 4 e225Google Scholar

    [58]

    Zhao J, Wu X, Yu H, Wang Y, Wu P, Yang X, Chu D, Owens G, Xu H 2023 EcoMat 5 e12302Google Scholar

    [59]

    Mo Z, Wei S, Xie D, Zhu K, Li H, Lu X, Liang L, Du C, Liu Z, Chen G 2024 Sci. China Chem. 67 1672Google Scholar

  • 图 1  (a) 碳纳米管纸、(b) 碳纳米管气凝胶电极以及与离子传输的示意图, 插图是相对应的SEM图[51]; (c) 碳纳米管气凝胶电极的极化曲线, 插图显示了极限电流与亚铁氰化物浓度的关系[51]; (d) 原始碳纳米管的SEM正面图[52]; (e) 碳纳米管-石墨烯杂化物的SEM正面图[52]; (f) 碳纳米管-石墨烯杂化物的SEM横截面[52]

    Fig. 1.  (a) Carbon nanotube (CNT) paper and (b) CNT aerogel electrodes with schematic illustration of ion transport; insets show corresponding SEM images [51]; (c) polarization curve of the CNT aerogel electrode, with inset showing the relationship between limiting current and ferricyanide concentration[51]; (d) SEM top view of pristine CNTs[52]; (e) SEM top view of CNT-graphene hybrid[52]; (f) SEM cross-sectional view of the CNT-graphene hybrid.

    图 2  (a) 热电化学电池结构示意图[53]; (b) 在不同的温差下, 热电池的短路电流和开路电压变化[53]; (c) 热电池的电极和(d) 电极上覆盖氧化的MWCNT的SEM图像[53]

    Fig. 2.  (a) Schematic of thermocell[53]; (b) short-circuit current and open-circuit voltage of the thermocell under different temperature gradients[53]; SEM image of (c) the electrode of the thermocell and (d) electrode coated with an oxidized multi-walled carbon nanotube layer [53].

    图 3  (a) 热电池操作的示意图[50]; (b) [Fe(CN)6]3–/4–浓度对热电池离子电导率和热导率的变化[50]; (c) [Fe(CN)6]3–/4–浓度对热电池PmaxPmax/(ΔT)2(插图)的影响[50]; (d) 添加Gdm+前后0.4 mol/L [Fe(CN)6]3–/4–的照片[54]; (e) 单个平面TC-LTC热电池的照片[54]; (f) LTC和TC-LTC在不同温度下的导热系数[54]; (g) 胍离子引起的热电池增强效应的机理示意图[55]; (h) 具有不同浓度CH6ClN3的浸泡溶液中氧化还原对的相对浓度变化[55]; (i) 以0—4.0 mol/L的胍离子(CH6ClN3)和0.3 mol/L的[Fe(CN)6]3–/4–作为不同的浸泡液, 热电池热导率的变化[55]

    Fig. 3.  (a) Schematic of thermocell operation[50]; (b) effect of [Fe(CN)6]3–/4– concentration on ionic conductivity and thermal conductivity of the thermocell[50]; (c) effect of [Fe(CN)6]3–/4– concentration on Pmax and Pmax/(ΔT)2 (inset)[50]; (d) photos of 0.4 mol/L [Fe(CN)6]3–/4– before and after adding Gdm+[54]; (e) photo of a single-plane TC-LTC thermocell[54]; (f) thermal conductivity of LTC and TC-LTC at different temperatures[54]; (g) schematic of thermocouple enhancement mechanism induced by Gdm+[55]; (h) relative redox species concentrations in soaking solutions with different CH6ClN3 concentrations[55]; (i) thermal conductivity of thermocells with 0–4.0 mol/L CH6ClN3 and 0.3 mol/L [Fe(CN)6]3–/4– as soaking solutions[55].

    图 4  (a) 由质量分数为5.5%琼脂和0.1 mol/L [Fe(CN)6]3–/4–制备的凝胶照片[8]; 在0.1 mol/L [Fe(CN)6]3–/4–浓度下, (b) 液态热电池和(c) 凝胶热电池的扫描速率和归一化循环伏安图[8]; (d) 当CR2032外壳发生热短路时, 将较冷的铝块贴上并保持在15 ℃下, 这些电池所需的相对冷却功率[8]; (e)热端和冷端温度分别为35 ℃和15 ℃时, 不同处理方式的电极在0.1 mol/L [Fe(CN)6]3–/4–下的短路电流密度[8]

    Fig. 4.  (a) Photo of gel made from 5.5% agar (mass percent) and 0.1 mol/L [Fe(CN)6]3–/4–[8]; cyclic voltammograms of (b) liquid thermocell and (c) gel thermocell at various scan rates, normalized at 0.1 mol/L [Fe(CN)6]3–/4–[8]; (d) relative cooling power required when CR2032 cells experience shorting, with a cold aluminum block applied and maintained at 15 ℃[8]; (e) jsc of electrodes with different treatments in 0.1 mol/L [Fe(CN)6]3–/4–, with hot and cold sides at 35 ℃ and 15 ℃, respectively[8].

    图 5  (a) 热电池的组成以及组装好的平面热电池的照片(插图为热电池工作原理图)[51]; (b) 由圆柱形碳纳米管热电池电极组装的热电池照片[51]; (c) 不同处理电极热电池的功率密度与电流密度变化[51]; (d) 热电池结构图, MWNT泡沫碳电极的SEM图像和海绵纤维素热分离器的光学图像[50]; (e) 不同温差下该热电池的功率密度与其他类型平面热电池的比较[50]; (f) 平面电极、鳍状电极和针电极热电池的性能比较[50]

    Fig. 5.  (a) Components of the thermocell and photo of the assembled planar thermocell (inset: working principle diagram)[51]; (b) photo of thermocell assembled with cylindrical CNT electrodes[51]; (c) power density vs. current density of thermocells with different electrode treatments[51]; (d) schematic of thermocouple structure, SEM image of MWNT foam carbon electrode, and optical image of sponge cellulose thermal separator[50]; (e) power density of the thermocouple under different temperature gradients compared with other planar types[50]; (f) performance comparison of planar, finned, and needle electrode thermocells[50].

    图 6  (a) 基于纤维素气凝胶的TEC用于热电转换的示意图[58]; (b) 太阳光照后, LE-TEC(上图)和AE-TEC(下图)侧面的红外图像[58]; (c) LE-TEC和AE-TEC的κeff随温度的变化[58]; (d) 不同高度AE-TEC, AE-H 2.0, AE-H 2.5和AE-H 3.0热电池的照片[58]; (e) AE-H 2.5和AE-H 2.5-泡沫TEC的照片, EPS泡沫覆盖在气凝胶顶部[58]; (f) 一次阳光照射后, AE-H 2.5和AE-H 2.5-泡沫在23 ℃下的电流-电压和功率-电压曲线[58]; (g) TEC的组成部分和管状TEC器件的示意图[59]; (h) ASE 2-2电极的SEM图像[59]; (i) 在不同温差下, ASE 2-2 TEC的功率密度与负载电阻的关系[59]

    Fig. 6.  (a) Schematic of cellulose aerogel-based TEC for thermoelectric conversion[58]; (b) infrared images of LE-TEC (top) and AE-TEC (bottom) side views under sunlight[58]; (c) temperature-dependent effective κeff of LE-TEC and AE-TEC[58]; (d) photos of AE-TEC thermocells with different heights: AE-H 2.0, AE-H 2.5, and AE-H 3.0[58]; (e) photos of AE-H 2.5 and AE-H 2.5-foam TECs, with EPS foam covering the aerogel top[58]; (f) current–voltage and power–voltage curves of AE-H 2.5 and AE-H 2.5-foam at 23 ℃ after one sunlight exposure[58]; (g) components and schematic of tubular TEC device[59]; (h) SEM image of ASE 2-2 electrode[59]; (i) power density vs. load resistance of ASE 2-2 TEC under different temperature gradients[59]

  • [1]

    Abramovitz A, Shmilovitz D 2021 Energies 14 4917Google Scholar

    [2]

    Ansu-Mensah P, Bein M A 2019 Nat. Resour. Forum 43 181Google Scholar

    [3]

    Iqbal S, Wang Y, Shaikh P A, Maqbool A, Hayat K 2022 Environ. Sci. Pollut. Res. 29 7067Google Scholar

    [4]

    Hosseini S E, Wahid M A 2016 Renewable Sustainable Energy Rev. 57 850Google Scholar

    [5]

    Shenkoya T 2020 Internet of Things 11 100250Google Scholar

    [6]

    Mufutau Opeyemi B 2021 Energy 228 120519Google Scholar

    [7]

    Liu X, Elgowainy A, Wang M 2020 Green Chem. 22 5751Google Scholar

    [8]

    Wu J, Black J J, Aldous L 2017 Electrochim. Acta 225 482Google Scholar

    [9]

    Liu Y, Wang H, Sherrell P C, Liu L, Wang Y, Chen J 2021 Adv. Sci. 8 2100669Google Scholar

    [10]

    Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H 2019 Adv. Funct. Mater. 29 1900304Google Scholar

    [11]

    Núñez C G, Navaraj W T, Polat E O, Dahiya R 2017 Adv. Funct. Mater. 27 1606287Google Scholar

    [12]

    Hendricks T J 2019 MRS Adv. 4 457Google Scholar

    [13]

    Zhang L, Shi X L, Yang Y L, Chen Z G 2021 Mater. Today 46 62Google Scholar

    [14]

    Han C G, Qian X, Li Q, Deng B, Zhu Y, Han Z, Zhang W, Wang W, Feng S P, Chen G, Liu W 2020 Science 368 1091Google Scholar

    [15]

    Yang P H, Liu K, Chen Q, Mo X B, Zhou Y S, Li S, Feng G, Zhou J 2016 Angew. Chem. Int. Ed. 55 12050Google Scholar

    [16]

    Burmistrov I, Khanna R, Gorshkov N, Kiselev N, Artyukhov D, Boychenko E, Yudin A, Konyukhov Y, Kravchenko M, Gorokhovsky A, Kuznetsov D 2022 Sustainability 14 9483Google Scholar

    [17]

    Battistel A, Peljo P 2021 Curr. Opin. Electrochem. 30 100853Google Scholar

    [18]

    Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019 Energy Environ. Sci. 12 2983Google Scholar

    [19]

    Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R, Rogers J A 2019 Chem. Rev. 119 5461Google Scholar

    [20]

    Ao D W, Liu W D, Zheng Z H, Shi X L, Wei M, Zhong Y M, Li M, Liang G X, Fan P, Chen Z G 2022 Adv. Energy Mater. 12 2202731Google Scholar

    [21]

    Cao T, Shi X L, Li M, Hu B, Chen W, Liu W Di, Lyu W, MacLeod J, Chen Z G 2023 eScience 3 100122Google Scholar

    [22]

    Ohno H, Ikhlayel M, Tamura M, Nakao K, Suzuki K, Morita K, Kato Y, Tomishige K, Fukushima Y 2021 Green Chem. 23 457Google Scholar

    [23]

    Moioli E, Schildhauer T 2022 Renewable Sustainable Energy Rev. 158 112120Google Scholar

    [24]

    Baliban R C, Elia J A, Weekman V, Floudas C A 2012 Comput. Chem. Eng. 47 29Google Scholar

    [25]

    Villarroel-Schneider J, Höglund-Isaksson L, Mainali B, Martí-Herrero J, Cardozo E, Malmquist A, Martin A 2022 Energy Convers. Manag. 261 115670Google Scholar

    [26]

    He W, Li S, Bai P, Zhang D, Feng L, Wang L, Fu X, Cui H, Ji X, Ma R 2022 Nano Energy 96 107109Google Scholar

    [27]

    Jin H, Li J, Iocozzia J, Zeng X, Wei P C, Yang C, Li N, Liu Z, He J H, Zhu T, Wang J, Lin Z, Wang S 2019 Angew. Chem. Int. Ed. 58 15206Google Scholar

    [28]

    Yu B, Xiao H, Zeng Y, Liu S, Wu D, Liu P, Guo J, Xie W, Duan J, Zhou J 2022 Nano Energy 93 106795Google Scholar

    [29]

    Duan J, Feng G, Yu B, Li J, Chen M, Yang P, Feng J, Liu K, Zhou J 2018 Nat. Commun. 9 5146Google Scholar

    [30]

    Wang S, Li Y, Yu M, Li Q, Li H, Wang Y, Zhang J, Zhu K, Liu W 2024 Nat. Commun. 15 1172Google Scholar

    [31]

    Han H, Zhao L, Wu X, Zuo B, Bian S, Li T, Liu X, Jiang Y, Chen C, Bi J, Xu J, Yu L 2024 J. Mater. Chem. A 12 24041Google Scholar

    [32]

    Jin L, Greene G W, MacFarlane D R, Pringle J M 2016 ACS Energy Lett. 1 654Google Scholar

    [33]

    Liu L, Zhang D, Bai P, Mao Y, Li Q, Guo J, Fang Y, Ma R 2023 Adv. Mater. 35 2300696Google Scholar

    [34]

    Liu Y, Cui M, Ling W, Cheng L, Lei H, Li W, Huang Y 2022 Energy Environ. Sci. 15 3670Google Scholar

    [35]

    Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q 2025 Nat. Commun. 16 16932

    [36]

    Duan J, Yu B, Huang L, Hu B, Xu M, Feng G, Zhou J 2021 Joule 5 768Google Scholar

    [37]

    Qian X, Ma Z, Huang Q, Jiang H, Yang R 2024 ACS Energy Lett. 9 679Google Scholar

    [38]

    Zhang H, Lek D G, Huang S, Lee Y M, Wang Q 2022 Adv. Mater. 34 2202266Google Scholar

    [39]

    He X, Sun H, Li Z, Chen X, Wang Z, Niu Y, Jiang J, Wang C 2022 J. Mater. Chem. A 10 20730Google Scholar

    [40]

    Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X 2023 Micromachines 14 155Google Scholar

    [41]

    Bai C, Li X, Cui X, Yang X, Zhang X, Yang K, Wang T, Zhang H 2022 Nano Energy 100 107449Google Scholar

    [42]

    Zhao Y, Fu X, Liu B, Sun J, Zhuang Z, Yang P, Zhong J, Liu K 2023 Sci. China Mater. 66 1934Google Scholar

    [43]

    Liu X, Wang T, Ye H, Nan W, Chen M, Fang J, Fan F R 2024 EcoEnergy 2 478Google Scholar

    [44]

    Kao S T, Hsu C C, Hong S H, Jeng U S, Wang C H, Tung S H, Liu C L 2025 Adv. Energy Mater. 15 2405502Google Scholar

    [45]

    Bai C, Wang Z, Yang S, Cui X, Li X, Yin Y, Zhang M, Wang T, Sang S, Zhang W 2021 ACS Appl. Mater. Interfaces 13 37316Google Scholar

    [46]

    Kim K, Hwang S, Lee H 2020 Electrochim. Acta 335 135651Google Scholar

    [47]

    Dupont M F, MacFarlane D R, Pringle J M 2017 Chem. Commun. 53 6288Google Scholar

    [48]

    Li Y, Li Q, Zhang X, Deng B, Han C, Liu W 2022 Adv. Energy Mater. 12 2103666Google Scholar

    [49]

    Hu R, Cola B A, Haram N, Barisci J N, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, Dela Cruz M E, Ferraris J P, Zakhidov A A, Baughman R H 2010 Nano Lett. 10 838Google Scholar

    [50]

    Zhang L, Kim T, Li N, Kang T J, Chen J, Pringle J M, Zhang M, Kazim A H, Fang S, Haines C, Al-Masri D, Cola B A, Razal J M, Di J, Beirne S, MacFarlane D R, Gonzalez-Martin A, Mathew S, Kim Y H, Wallace G, Baughman R H 2017 Adv. Mater. 29 1605652Google Scholar

    [51]

    Im H, Kim T, Song H, Choi J, Park J S, Ovalle-Robles R, Yang H D, Kihm K D, Baughman R H, Lee H H, Kang T J, Kim Y H 2016 Nat. Commun. 7 10600Google Scholar

    [52]

    Zhou Y, Qian W, Huang W, Liu B, Lin H, Dong C 2019 Nanomaterials 9 10Google Scholar

    [53]

    Shpekina V, Burmistrov I, Gorshkov N, Artyukhov D, Kiselev N, Kovyneva N, Smirnova Y 2019 IOP Conf. Ser. Mater. Sci. Eng. 693 012028Google Scholar

    [54]

    Yu B, Duan J, Cong H, Xie W, Liu R, Zhuang X, Wang H, Qi B, Xu M, Wang Z L, Zhou J 2020 Science 370 342Google Scholar

    [55]

    Zhang D, Mao Y, Ye F, Li Q, Bai P, He W, Ma R 2022 Energy Environ. Sci. 15 2974Google Scholar

    [56]

    Lei Z, Gao W, Wu P 2021 Joule 5 2211Google Scholar

    [57]

    Zhou Y, Zhang D, Zhang S, Liu Y, Ma R, Wallace G, Chen J 2024 SusMat 4 e225Google Scholar

    [58]

    Zhao J, Wu X, Yu H, Wang Y, Wu P, Yang X, Chu D, Owens G, Xu H 2023 EcoMat 5 e12302Google Scholar

    [59]

    Mo Z, Wei S, Xie D, Zhu K, Li H, Lu X, Liang L, Du C, Liu Z, Chen G 2024 Sci. China Chem. 67 1672Google Scholar

  • [1] 李昊, 周晶晶, 孙琪, 陈文, 周静. 基于多模态谐振的宽频雨水压电俘能器设计. 物理学报, 2025, 74(14): 147701. doi: 10.7498/aps.74.20250213
    [2] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理. 物理学报, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析. 物理学报, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [4] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [5] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [6] 王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能. 物理学报, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
    [7] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前. Ag@SiO2耦合结构设计及其对薄膜太阳电池的响应调控. 物理学报, 2020, 69(18): 188801. doi: 10.7498/aps.69.20200334
    [8] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [9] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化. 物理学报, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [10] 庄新港, 刘红博, 张鹏举, 史学舜, 刘长明, 刘红元, 王恒飞. 低温辐射计热结构设计与分析. 物理学报, 2019, 68(6): 060601. doi: 10.7498/aps.68.20181880
    [11] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [12] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [13] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化. 物理学报, 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [14] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [15] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [16] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [17] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣. 十字环型左手材料单元结构设计与仿真. 物理学报, 2012, 61(16): 164101. doi: 10.7498/aps.61.164101
    [18] 周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰. 非晶硅光伏电池表面高效光陷阱结构设计. 物理学报, 2011, 60(8): 088802. doi: 10.7498/aps.60.088802
    [19] 郭云胜, 张雪峰. 一种结构简单的二维左手材料设计及仿真研究. 物理学报, 2010, 59(12): 8584-8590. doi: 10.7498/aps.59.8584
    [20] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
计量
  • 文章访问数:  511
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-18
  • 修回日期:  2025-06-05
  • 上网日期:  2025-07-01
  • 刊出日期:  2025-09-05

/

返回文章
返回