搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湍流积分尺度修正及其对湍流耗散规律的影响

王宇杰 杨君聖 王杰 周彦宏 刘锋

引用本文:
Citation:

湍流积分尺度修正及其对湍流耗散规律的影响

王宇杰, 杨君聖, 王杰, 周彦宏, 刘锋

Correction of turbulent integral length scale and its influence on turbulent dissipation law

WANG Yujie, YANG Junsheng, WANG Jie, ZHOU Yanhong, LIU Feng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 湍流直接数值模拟受限于计算域尺寸, 无法完全解析湍动能谱低波数区的所有波数, 造成计算数据中部分大尺度信息丢失. 随着湍流的演化, 湍动能谱的峰值波数会向低波数迁移, 使得低波数缺失现象进一步加剧, 导致所计算的积分尺度和湍流耗散相关统计量偏离物理真实. 本研究基于von Kármán谱模型的推广形式, 充分考虑数值计算未完全解析的低波数区湍动能谱, 并利用该模型对均匀各向同性自由衰减湍流的积分尺度和湍流耗散相关统计量进行修正. 研究结果表明: 修正后的积分尺度$ L $显著高于未修正值, 且其随时间的变化规律符合Saffmann理论预测的$ L\propto {t}^{2/5} $幂律关系; 修正前湍流耗散系数$ {C}_{\varepsilon } $为常数, 说明此时湍流为均衡状态, 而修正后耗散系数$ {C}_{\varepsilon } $的演化满足湍流非均衡耗散规律$ {C}_{\varepsilon }\sim{Re}_{\varLambda }^{-1} $. 将数值计算缺失的低波数区湍动能谱引入后, 湍流状态由均衡向非均衡转变, 说明大尺度对湍流耗散有很强的调控作用, 这与学术界普遍认为的大尺度结构是造成湍流非均衡性本质原因的结论相一致. 在有限雷诺数或者受初始条件影响较大的湍流流动中, 大尺度结构对流动的影响显著, 湍流无法在全尺度实现均衡.
    Turbulence modeling relies critically on accurate characterization of large-scale structures, with the integral length scale $ L $ serving as a key parameter for industrial applications ranging from combustion stability optimization to wind farm design and aerodynamic load prediction. However, direct numerical simulation (DNS) of turbulence faces inherent limitations in resolving all wavenumbers within the low-wavenumber region of the turbulent kinetic energy spectrum due to finite computational domain sizes. This unresolved low-wavenumber deficiency leads to incomplete characterization of large-scale structures and introduces systematic deviations in key statistical quantities, particularly the integral length scale $ L $ and turbulence dissipation coefficient $ {C}_{\varepsilon } $. As turbulence evolves, the spectral peak wavenumber $ {k}_{p} $ migrates toward lower wavenumbers, exacerbating the loss of large-scale information and causing computed statistics to diverge from physical reality. In this study, we perform high-fidelity DNS of homogeneous isotropic decaying turbulence in a periodic cubic domain of side length 4π with $ {384}^{3} $ grid points. The DNS is executed by using a standard pseudospectral solver and a fourth-order Runge-Kutta time integration scheme, with a semi-implicit treatment of the viscous term. The spatial resolution $ {k}_{\mathrm{m}\mathrm{a}\mathrm{x}}\eta =1.65 $ ensures adequate resolution of dissipative scales ($ \eta $ is the Kolmogorov scale). Simulations start from a fully developed field initialized with a spectrum matching Comte-Bellot and Corrsin’s experimental data and evolve within a time interval where turbulence exhibits established isotropic decay characteristics. Existing correction models, predominantly based on equilibrium turbulence assumptions, fail to accurately represent the non-equilibrium dynamics governed by large-scale structures. According to the generalized von Kármán spectrum model, we use a correction framework to explain the unresolved low-wavenumber contributions in homogeneous isotropic decaying turbulence. The DNS data reveal that the uncorrected integral scale $ {L}_{{\mathrm{m}}} $ significantly underestimates the true $ L $, with errors escalating as $ {k}_{L}/{k}_{p} $ increases, where $ {k}_{L} $ is the minimum resolvable wavenumber in the simulation domain. After correction, $ L $ exhibits a temporal evolution following the Saffmann-predicted power-law relationship $ L\propto {t}^{2/5} $, contrasting sharply with the underestimated pre-correction values. Although the spectral correction substantially increases the spectral integral scale $ L $, its value remains less than the physically derived integral scale $ \varLambda $ computed from the velocity correlation function, which is primarily due to the finite domain size limiting large-scale statistics and the moderate grid resolution, though higher-resolution simulations with the same domain show $ L $ converging towards $ \varLambda $. Notably, the unmodified dissipation coefficient $ {C}_{\varepsilon } $ remains constant, which is consistent with equilibrium turbulence assumptions, whereas the corrected $ {C}_{\varepsilon } $ evolves according to the non-equilibrium scaling law $ {C}_{\varepsilon }\sim{Re}_{\varLambda }^{-1} $. Further analysis confirms that the ratio $ L/\varLambda $ shifts from Kolmogorov’s $ {Re}_{\varLambda }^{1} $dependence to a Reynolds-number-independent plateau after correction, fundamentally changing the turbulence dissipation paradigm. This transition from equilibrium to non-equilibrium dissipation behavior underscores the dominant role of large-scale structures in regulating energy cascade dynamics. Our results demonstrate that finite Reynolds numbers or strong initial-condition effects amplify the non-equilibrium characteristics of turbulence, hindering the full-scale equilibrium. These findings reconcile long-standing theoretical discrepancies and provide a paradigm for modeling scale interactions in turbulence.
  • 图 1  算例能谱$ E\left(k\right) $随波数的演化. 其中能谱$ E\left(k\right) $用湍动能耗散率$ \text{e} $和运动黏度$ \text{n} $无量纲化, 波数$ k $用耗散尺度$ \text{h} $无量纲化. 双点划线满足$ E\left(k\right)\sim{k}^{-5/3} $关系. 能谱在惯性子区满足$ {k}^{-5/3} $标度律

    Fig. 1.  Example of the energy spectrum $ E\left(k\right) $ evolution with wavenumber. The energy spectrum $ E\left(k\right) $ is non-dimensionalized by the turbulent kinetic energy dissipation rate $ \varepsilon $ and the kinematic viscosity $ \text{n} $, while the wavenumber $ k $ is non-dimensionalized by the dissipation scale $ \text{h} $. The double dot-dash line corresponds to the $ E\left(k\right)\sim $$ {k}^{-5/3} $ relationship. The energy spectrum in the inertial subrange follows the $ {k}^{-5/3} $ scaling law.

    图 2  频谱指数$ p $及低波数缺失程度$ {k}_{L}/{k}_{p} $对统计参数修正的影响 (a) 对$ {u}^{2} $的影响; (b) 对$ L $的影响

    Fig. 2.  Effects of spectral exponent $ p $ and low-wavenumber deficiency ratio $ {k}_{L}/{k}_{p} $ on statistical parameters: (a) Impact on $ u $; (b) impact on $ L $.

    图 3  泰勒尺度随时间的演化特征 (a) 泰勒尺度平方的时间导数, 曲线在$ t > 0.29725 $后呈现平坦特征, 双点划线为$ n=-1.40 $理论线; (b) 泰勒尺度平方, 双点划线满足$ {\varLambda }^{2}\sim{t}^{1} $关系

    Fig. 3.  Evolution characteristics of the Taylor scale over time: (a) Time derivative of the Taylor scale squared. The curve exhibits a flat characteristic for $ t > 0.29725 $, with the double dot-dash line representing the theoretical line $ n=-1.40 $; (b) Taylor scale squared. The double dot-dash line corresponds to the $ {\varLambda }^{2}\sim{t}^{1} $ relationship.

    图 4  湍动能随时间演化. 双点划线满足$ {u}^{2}\sim{t}^{-6/5} $关系. 已知修正前后$ {u}^{2} $变化很小, 所以只做修正后的湍动能曲线

    Fig. 4.  Evolution of turbulent kinetic energy over time. The double dot-dash line corresponds to the $ {u}^{2}\sim{t}^{-6/5} $ relationship. Since the variation in $ {u}^{2} $ before and after correction is negligible, only the corrected turbulent kinetic energy curve is plotted.

    图 5  修正前后积分尺度随时间的演化. 双点划线满足$ L\sim $$ t^{2/5} $关系

    Fig. 5.  Evolution of the integral scale before and after correction over time. The double dot-dash line corresponds to the $ L{\sim t}^{1/2} $ relationship.

    图 6  积分尺度之比随时间的演化

    Fig. 6.  Evolution of the integral scale ratio with time.

    图 7  修正前后耗散系数$ {C}_{\varepsilon } $随泰勒雷诺数$ {Re}_{\varLambda } $的变化. 双点划线满足$ {C}_{\varepsilon }\sim{Re}_{\varLambda }^{-1} $关系. 箭头指示方向为时间演化方向

    Fig. 7.  Variation of the dissipation coefficient $ {C}_{\varepsilon } $ with the Taylor Reynolds number $ {Re}_{\varLambda } $ before and after correction. The double dot-dash line corresponds to the $ {C}_{\varepsilon }\sim{Re}_{\varLambda }^{-1} $ relationship. The arrows indicate the direction of time evolution.

    图 8  修正前后特征尺度$ L/\varLambda $比值随泰勒雷诺数$ {Re}_{\varLambda } $的演化. 双点划线满足$ L/\varLambda \sim{Re}^{1} $关系

    Fig. 8.  Evolution of the characteristic scale ratio $ L/\varLambda $ with the Taylor Reynolds number $ {Re}_{\varLambda } $ before and after correction. The double dot-dash line corresponds to the $ L/\varLambda \sim{Re}^{1} $ relationship.

  • [1]

    Pope S B 2001 Turbulent flows (Cambridge: Cambridge University Press

    [2]

    Warhaft Z, Lumley J L 1978 J. Fluid Mech. 88 659Google Scholar

    [3]

    Porté-Agel F, Bastankhah M, Shamsoddin S 2020 Boundary-Layer Meteorol. 174 1Google Scholar

    [4]

    Trush A, Pospíšil S, Kozmar H 2020 WIT Trans. Eng. Sci. 128 113

    [5]

    Cotela Dalmau J, Oñate Ibáñez de Navarra E, Rossi R 2016 Applications of turbulence modeling in civil engineering (Barcelona: CIMNE

    [6]

    Li M, Li M, Sun Y 2021 J. Sound Vib. 490 115721Google Scholar

    [7]

    Taylor G I 1935 Proc. R. Soc. London, Ser. A 151 421Google Scholar

    [8]

    Tennekes H, Lumley J L 1972 A first course in turbulence (Cambridge: MIT Press

    [9]

    Kolmogorov A N 1941 Docl. Akad. Nauk SSSR A 31 538

    [10]

    Dryden H L 1943 Q. Appl. Math. 1 7Google Scholar

    [11]

    Saffman P G 1967 J. Fluid Mech. 27 581Google Scholar

    [12]

    Oberlack M 2002 Proc. Appl. Math. Mech. 1 294Google Scholar

    [13]

    Comte-Bellot G, Corrsin S 1966 J. Fluid Mech. 25 657Google Scholar

    [14]

    Bos W J T, Shao L, Bertoglio J P 2007 Phys. Fluids 19 045101Google Scholar

    [15]

    Ishihara T, Morishita K, Yokokawa M, Uno A, Kaneda Y 2016 Phys. Rev. Fluids 1 082403Google Scholar

    [16]

    Thornber B 2016 Phys. Fluids 28 105107

    [17]

    O’Neill P L, Nicolaides D, Honnery D, Soria J 2004 15th Australasian Fluid Mechanics Conference The University of Sydney, Sydney, Australia, December 13–17, 2004 p1

    [18]

    Ishihara T, Gotoh T, Kaneda Y 2009 Annu. Rev. Fluid Mech. 41 165Google Scholar

    [19]

    Goto S, Vassilicos J C 2015 Phys. Lett. A 379 1144Google Scholar

    [20]

    George W K 1992 Phys. Fluids A 4 1492

    [21]

    Liu F, Lu L P, Bos W J T, Fang L 2019 Phys. Rev. Fluids 4 084603Google Scholar

    [22]

    Wang H, Sonnenmeier J R, Gamard S, George W 2000 International Congress of Theoretical and Applied Mechanics Chicago, IL, August 27–September 1, 2000 p8

    [23]

    de Bruyn Kops S M, Riley J J 1998 Phys. Fluids 10 2125Google Scholar

    [24]

    Von Karman T 1937 Proc. Natl. Acad. Sci. U. S. A. 23 98Google Scholar

    [25]

    Rogallo R S 1981 Numerical experiments in homogeneous turbulence (Washington: NASA

    [26]

    Wang C H, Fang L 2018 Chin. Phys. Lett. 35 080501Google Scholar

    [27]

    Comte-Bellot G, Corrsin S 1966 J. Fluid Mech. 25 657Google Scholar

    [28]

    Gamard S, George W K 2000 Flow Turbul. Combust. 63 443Google Scholar

    [29]

    Wang H, George W K 2002 J. Fluid Mech. 459 429Google Scholar

    [30]

    George W K, Wang H, Wollblad C, Johansson T G 2001 14th Australasian Fluid Mechanics Conference Adelaide University, Adelaide, Australia, December 10–14, 2001 p41

    [31]

    Batchelor G K 1953 The theory of homogeneous turbulence (Cambridge: Cambridge University Press

    [32]

    Bos W J T, Rubinstein R 2017 Phys. Rev. Fluids 2 022601Google Scholar

    [33]

    Steiros K 2022 Phys. Rev. E 105 035109

    [34]

    Goto S, Vassilicos J C 2016 Phys. Rev. E 94 053108Google Scholar

    [35]

    Krogstad P Å, Davidson P A 2012 Phys. Fluids 24 035103Google Scholar

    [36]

    Steiros K 2022 Phys. Rev. Fluids 7 104607Google Scholar

    [37]

    Vassilicos J C 2015 Annu. Rev. Fluid Mech. 47 95Google Scholar

    [38]

    Mazellier N, Vassilicos J C 2010 Phys. Fluids 22 075101Google Scholar

    [39]

    Valente P C, Vassilicos J C 2012 Phys. Rev. Lett. 108 214503Google Scholar

    [40]

    Liu F, Fang L, Shao L 2020 Chin. Phys. B 29 114702Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象. 物理学报, doi: 10.7498/aps.72.20230101
    [2] 席忠红, 赵永珍, 王光弼, 石玉仁. 环形运动势搅拌下偶极玻色-爱因斯坦凝聚体中的von Kármán涡街. 物理学报, doi: 10.7498/aps.72.20222312
    [3] 席忠红, 杨雪滢, 唐娜, 宋琳, 李晓霖, 石玉仁. 偶极玻色-爱因斯坦凝聚体在类方势阱中的Bénard-von Kármán涡街. 物理学报, doi: 10.7498/aps.67.20181604
    [4] 李超, 冉政. 旋涡Lamb矢量与各向同性湍流的统计结构. 物理学报, doi: 10.7498/aps.64.034702
    [5] 李小龙, 陆颖, 翟永亮, 吴兰生, 孙威, 胡书新. 平板电极间胶体晶体在电场作用下的各向同性压缩. 物理学报, doi: 10.7498/aps.62.176105
    [6] 高东宝, 曾新吾. 基于各向同性材料的层状椭圆柱形声隐身衣设计. 物理学报, doi: 10.7498/aps.61.184301
    [7] 刘亚红, 刘辉, 赵晓鹏. 基于小型化结构的各向同性负磁导率材料与左手材料. 物理学报, doi: 10.7498/aps.61.084103
    [8] 戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川. 应变Ge空穴有效质量的各向异性与各向同性. 物理学报, doi: 10.7498/aps.61.237102
    [9] 张国华, 孙其诚, 黄芳芳, 金峰. 摩擦颗粒体系各向同性压缩过程中的堵塞行为. 物理学报, doi: 10.7498/aps.60.124502
    [10] 龚伯仪, 周欣, 赵晓鹏. 光频三维各向同性左手超材料结构单元模型的仿真设计. 物理学报, doi: 10.7498/aps.60.044101
    [11] 孟繁义, 吴 群, 金博识, 王海龙, 吴 健. 二维各向同性异向介质负折射特性仿真验证. 物理学报, doi: 10.7498/aps.55.4514
    [12] 何兵, 应和平, 季达人. X-Y-Z模型——非各向同性反铁磁Heisenberg系统的自旋波解. 物理学报, doi: 10.7498/aps.45.522
    [13] 潘峰, 许佩军. 三维各向同性振子的q形变及其波函数. 物理学报, doi: 10.7498/aps.42.867
    [14] 顾世杰. 各向同性介质中任意偏振光的简并四波混频. 物理学报, doi: 10.7498/aps.33.593
    [15] 胡海昌. 橫觀各向同性弹性体的振动问题. 物理学报, doi: 10.7498/aps.11.231
    [16] 胡海昌. 在体积力作用下橫觀各向同性弹性体的平衡问题. 物理学报, doi: 10.7498/aps.11.219
    [17] 胡海昌. 横观各向同性的半无限弹性体的若干问题. 物理学报, doi: 10.7498/aps.10.239
    [18] 胡海昌. 球面各向同性体弹性力学的一般理论. 物理学报, doi: 10.7498/aps.10.57
    [19] 胡海昌. 横观各向同性体的弹性力学的空间问题. 物理学报, doi: 10.7498/aps.9.130
    [20] 施汝为, 潘孝硕. 各向同性铁磁物质之磁性. 物理学报, doi: 10.7498/aps.3.27
计量
  • 文章访问数:  367
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-06
  • 修回日期:  2025-06-19
  • 上网日期:  2025-07-01

/

返回文章
返回