搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性非牛顿流体的表面波色散方程

李昊轩 孙浩森 赵贯甲

引用本文:
Citation:

黏弹性非牛顿流体的表面波色散方程

李昊轩, 孙浩森, 赵贯甲

Study of surface wave dispersion equations for viscoelastic non-Newtonian fluids

LI Haoxuan, SUN Haosen, ZHAO Guanjia
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 黏弹性非牛顿流体表面波色散方程研究是开展表面光散射法测量黏弹性等热物性参数的基础. 区别于牛顿流体, 非牛顿体系的复黏度表现出与频率和应力松弛时间相关的非线性特性, 因此建立能够准确描述其复黏度特性的本构模型至关重要. 基于多弛豫时间Maxwell模型, 本文通过总功率谱的模式分解方法构建了表面波色散方程的显式解, 系统考察了弛豫时间参数对表面波模式分布的影响. 本文研究揭示了本构模型中弛豫时间参数数目与体系非线性响应能力的定量关联, 为精确解析非牛顿流体表面波特性提供了依据, 也为表面光散射法黏弹性流体热物理性质测量奠定了理论基础.
    The study of surface wave dispersion equations in viscoelastic non-Newtonian fluids is the foundation for characterizing the thermophysical properties by using surface light scattering techniques. Unlike Newtonian fluids, non-Newtonian systems have the complex viscosity with nonlinear frequency behavior and stress relaxation time-dependent behavior. Consequently, the development of constitutive models capable of accurately capturing these complex viscosity characteristics is critical. Based on the multi-relaxation-time Maxwell framework, this work establishes a method of explicitly solving the surface wave dispersion equation through modal decomposition of the total power spectrum, which can systematically analyze the influence of relaxation time parameters on surface wave mode distributions. This study quantitatively correlates the number of relaxation time parameters in the constitutive model with the nonlinear response capacity of the system. These findings provide a theoretical foundation for precisely determining the surface wave characteristics in non-Newtonian fluids and advance the application of surface light scattering method to the measurement of thermophysical properties in viscoelastic fluid systems.Based on a multi-relaxation-time Maxwell model, the complex viscosity is formulated by combining multiple stress relaxation time. Utilizing non-depersonalization and polynomial decomposition, we derive the governing equations for surface wave dispersion and the associated power spectrum. By systematically varying the parameter n and dimensionless variables, the roots of the dispersion equations are analyzed to study surface wave modes—including capillary, elastic waves, and overdamped modes—and their spectral signatures. A partial fraction expansion method is employed to decouple the total power spectrum into explicit modal contributions. This method demonstrates how the relaxation parameters determine the distribution of surface wave modes, thereby clarifying the inherent multimodal relaxation dynamics of complex fluids.The proposed framework extends the classical Maxwell model by integrating multiple relaxation times, with a focus on surface wave dispersion behavior and spectral response. Theoretically, it quantifies the influence of relaxation time on the number and topological properties of roots in the complex plane. Furthermore, by correlating the dynamic behaviors of these roots with physical constraints, this study establishes criteria for the existence of different surface wave modes and evaluates their relative contributions to the power spectrum.When the elastic modulus is low and approaches Newtonian fluid behavior, increasing the number of relaxation time parameters n will increase the critical threshold for surface wave mode transition. This simultaneously generates n purely imaginary roots corresponding to overdamped modes. At higher elastic modulus, the critical threshold vanishes and is replaced by an oscillation-dominated regime requiring power spectrum analysis to solve surface wave dynamics problems. Larger n values reduce the spatial extent of this oscillatory regime.In systems with low elastic modulus, n mainly modulates the peak amplitudes in the power spectrum rather than changing its overall shape. Near the oscillation region, the power spectrum clearly distinguishes the contributions from capillary waves, elastic waves, and overdamped modes. Increasing n can enhance the strengths of elasticity and overdamped mode while suppressing the dominance of capillary wave. By incorporating additional relaxation time, the model gains enhance the resolution of multimodal relaxation dynamics, enabling precise characterization of viscoelasticity in complex non-Newtonian fluids.We improve the complex viscosity model by increasing the number of stress relaxation time parameters n. Through the theoretical analysis of parameter variations under different conditions, the surface wave characteristics of non-Newtonian viscoelastic fluids are systematically investigated. The main conclusions are shown below. First, increasing the number of relaxation time parameters n will increase the number of roots in the dispersion equation, introducing additional relaxation modes manifested as low-frequency overdamped behavior. Second, increasing stress relaxation time τ will induce a critical oscillation regime, at which point power spectrum analysis is required for surface wave dynamics. Increasing n can reduce the spatial extent of this regime or even enables its complete avoidance. Third, under identical parameters, higher n suppresses surface tension-driven capillary wave intensity while enhancing elastic wave dominance. Variations in n quantitatively reflect the viscoelastic heterogeneity of polymer networks. Fourth, selecting appropriate n values can tailor the ability of model to resolve specific relaxation modes, making it suitable for different viscoelastic non-Newtonian fluids.
  • 图 1  $\overline \tau $ = 0.1时, 不同n下色散方程的解与$\overline \sigma $关系 (a) n = 2; (b) n = 3; (c) n = 4; 其中${\overline \varOmega _{\text{c}}}$表示毛细波c的无量纲频率, ${\overline \varGamma _{\text{c}}}$表示毛细波c的无量纲阻尼率, $ {\overline \varGamma _{\text{s}}} $表示慢波s的无量纲阻尼率, ${\overline \varGamma _{\text{f}}}$表示快波f的无量纲阻尼率, ${\overline \varGamma _1}$—${\overline \varGamma _4}$表示纯虚数根

    Fig. 1.  Solution of the dispersion equation as a function of $\overline \sigma $ for different values of n: (a) n = 2; (b) n = 3; (c) n = 4; where ${\overline \varOmega _{\text{c}}}$ represents the dimensionless frequency of capillary wave c, ${\overline \varGamma _{\text{c}}}$represents the dimensionless damping rate of capillary wave c, $ {\overline \varGamma _{\text{s}}} $ represents the dimensionless damping rate of slow wave s, ${\overline \varGamma _{\text{f}}}$ represents the dimensionless damping rate of fast wave f, ${\overline \varGamma _1}$–${\overline \varGamma _4}$ represent the pure imaginary root.

    图 2  $\overline \tau $ = 1.0和10.0时, 不同n下色散方程的解与$\overline \sigma $的关系 (a) n = 2, $\overline \tau $ = 1.0; (b) n = 3, $\overline \tau $ = 1.0; (c) n = 4, $\overline \tau $ = 1.0; (d) n = 2,$\overline \tau $ = 10.0; (e) n = 3, $\overline \tau $ = 10.0; (f) n = 4, $\overline \tau $ = 10.0; 其中${\overline \varOmega _{\text{r}}}$表示毛细波r的无量纲频率, ${\overline \varGamma _{\text{r}}}$表示毛细波r的无量纲阻尼率

    Fig. 2.  Solution of the dispersion equation as a function of $\overline \sigma $ for varying parameters: (a) n = 2, $\overline \tau $ = 1.0; (b) n = 3, $\overline \tau $ = 1.0; (c) n = 4, $\overline \tau $ = 1.0; (d) n = 2, $\overline \tau $ = 10.0; (e) n = 3, $\overline \tau $ = 10.0; (f) n = 4, $\overline \tau $ = 10.0; where ${\overline \varOmega _{\text{r}}}$ represents the dimensionless frequency of capillary wave r, ${\overline \varGamma _{\text{r}}}$ represents the dimensionless damping rate of capillary waver.

    图 3  $\overline \sigma $ = 10.0, $\overline \tau $ = 0.1时, 不同n下的功率谱

    Fig. 3.  Power spectrum for various n at $\overline \sigma $ = 10.0, $\overline \tau $ = 0.1

    图 4  $\overline \sigma $ = 1.5, $\overline \tau $ = 1.0时, 不同n下的功率谱及其分解 (a) n = 2; (b) n = 3; (c) n = 4

    Fig. 4.  Power spectrum and its spectral decomposition for various n at $\overline \sigma $ = 1.5 and $\overline \tau $ = 1.0: (a) n = 2; (b) n = 3; (c) n = 4.

    图 5  $\overline \sigma $ = 0.3, $\overline \tau $ = 10.0时, 不同n下的功率谱及其分解 (a) n = 2; (b) n = 3; (c) n = 4

    Fig. 5.  Power spectrum and its spectral decomposition for various n at $\overline \sigma $ = 0.3 and $\overline \tau $ = 10.0: (a) n = 2; (b) n = 3; (c) n = 4.

    图 6  $\overline \sigma $ = 0.1, $\overline \tau $ = 10.0时, 不同n下的功率谱及其分解 (a) n = 2; (b) n = 3; (c) n = 4

    Fig. 6.  Power spectrum and its spectral decomposition for various n at $\overline \sigma $ = 0.1 and $\overline \tau $ = 10.0: (a) n = 2; (b) n = 3; (c) n = 4.

  • [1]

    Morris B A 2017 The Science and Technology of Flexible Packaging (Oxford, UK: William Andrew) pp121–147

    [2]

    Lanzaro A, Yuan X F 2022 Micromachines 13 256Google Scholar

    [3]

    刘西洋, 付涛涛, 朱春英, 马友光 2021 化工学报 72 772

    Liu X Y, Fu T T, Zhu C Y, Ma Y G 2021 CIESC J. 72 772

    [4]

    邵鸿飞, 高岩立, 任万杰, 李艳玲, 刘元俊, 刘忠民 2019 化学分析计量 28 6Google Scholar

    Shao H F, Gao Y L, Ren W J, Li Y L, Liu Y J, Liu Z M 2019 Chem. Anal. Meterage 28 6Google Scholar

    [5]

    Levich V G, Spalding D B 1962 Physicochemical Hydrodynamics (New Jersey: Prentice-Hall) pp591–599

    [6]

    Kadanoff L P, Martin P C 1963 Ann. Phys. 24 419Google Scholar

    [7]

    Harden J L, Pleiner H, Pincus P A 1989 Langmuir 5 1436Google Scholar

    [8]

    Harden J L, Pleiner H, Pincus P A 1991 J. Chem. Phys. 94 5208Google Scholar

    [9]

    Ohmasa Y, Hoshino T, Osada R, Yao M 2009 Phys. Rev. E 79 061601

    [10]

    Ohmasa Y, Yao M 2011 Phys. Rev. E 83 031605

    [11]

    Cao B H, Kim M W, Cummins H Z 1995 J. Chem. Phys. 102 9375Google Scholar

    [12]

    Cummins H Z, Pike E R 2013 Photon Correlation Spectroscopy and Velocimetry (Cham: Springer Science & Business Media) pp515–516

    [13]

    赵贯甲 2013博士学位论文 (西安: 西安交通大学)

    Zhao G J 2013 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University

    [14]

    赵贯甲, 张兴, 尹建国, 马素霞 2022 光学学报 42 2212001Google Scholar

    Zhao G J, Zhang X, Yin J G, Ma S X 2022 Acta Opt. Sin. 42 2212001Google Scholar

    [15]

    Jäckle J, Kawasaki K 1995 J. Phys. : Condens. Matter 7 4351Google Scholar

    [16]

    Langevin D 1992 Light Scattering by Liquid Surfaces and Complementary Techniques (New York: Marcel Dekker) pp49-51

    [17]

    Kubo R 1966 Rep. Prog. Phys. 29 255Google Scholar

    [18]

    Jäckle J 1998 J. Phys. : Condens. Matter 10 7121Google Scholar

    [19]

    Wang C H, Huang Q R 1997 J. Chem. Phys. 107 5898Google Scholar

    [20]

    Zang D Y, Zhang Y J 2011 Sci. China Phys. Mech. Astron. 54 1587Google Scholar

    [21]

    Dorshow R B, Turkevich L A 1993 Phys. Rev. Lett. 70 2439Google Scholar

    [22]

    Hoshino T, Ohmasa Y, Osada R, Yao M 2008 Phys. Rev. E 78 061604

    [23]

    Ablowitz M J, Fokas A S 2003 Complex Variables: Introduction and Applications (Cambridge: Cambridge University Press) pp206-245

    [24]

    Huang Q R, Wang C H, Deng N J 1998 J. Chem. Phys. 108 3827Google Scholar

    [25]

    Huang Q R, Wang C H 1998 J. Chem. Phys. 109 6103Google Scholar

  • [1] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量. 物理学报, doi: 10.7498/aps.73.20231974
    [2] 孙宗利, 康艳霜, 张君霞. 非均匀流体的体积黏度: Maxwell弛豫模型. 物理学报, doi: 10.7498/aps.73.20231459
    [3] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟. 物理学报, doi: 10.7498/aps.71.20211921
    [4] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202116
    [5] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进. 物理学报, doi: 10.7498/aps.67.20180271
    [6] 曹苗苗, 刘文鑫, 王勇, 朱觉远, 李科. 太赫兹波段Smith-Purcell辐射的介质加载光栅高频特性. 物理学报, doi: 10.7498/aps.65.014101
    [7] 彭妙娟, 刘茜. 黏弹性问题的改进的复变量无单元Galerkin方法. 物理学报, doi: 10.7498/aps.63.180203
    [8] 蔡善勇, 梅磊, 彭虎庆, 陆大全, 胡巍. 非局域非线性介质中多极表面光孤子的解析解及其稳定性分析. 物理学报, doi: 10.7498/aps.61.154211
    [9] 莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解. 物理学报, doi: 10.7498/aps.59.1403
    [10] 刘曼, 程传福, 宋洪胜, 滕树云, 刘桂媛. 高斯相关随机表面光散射散斑场相位奇异及其特性的理论研究. 物理学报, doi: 10.7498/aps.58.5376
    [11] 殷久利, 田立新. 一类非线性色散方程中的新型奇异孤立波. 物理学报, doi: 10.7498/aps.58.3632
    [12] 焦重庆, 罗积润. 有损金属圆波导中电磁波传输特性的研究. 物理学报, doi: 10.7498/aps.55.6360
    [13] 谢鸿全, 刘濮鲲. 等离子体填充带状螺旋线的色散方程. 物理学报, doi: 10.7498/aps.55.3514
    [14] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程. 物理学报, doi: 10.7498/aps.55.2397
    [15] 郭永存, 曾亿山, 卢德唐. 地层静温预测的非牛顿流体数学模型. 物理学报, doi: 10.7498/aps.54.802
    [16] 蒋亦民. 关于色散流体的介电方程. 物理学报, doi: 10.7498/aps.46.1332
    [17] 胡文忠. 任意多个磁层的层状结构中MSFVW和MSBVW的通用色散方程. 物理学报, doi: 10.7498/aps.38.449
    [18] 张承福. 湍流等离子体中的重整化色散方程. 物理学报, doi: 10.7498/aps.35.300
    [19] 刘连寿. π-N散射的复角动量. 物理学报, doi: 10.7498/aps.21.1123
    [20] 戴元本. 在非定域位势下散射矩阵对复角动量的解析性. 物理学报, doi: 10.7498/aps.20.947
计量
  • 文章访问数:  353
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-25
  • 修回日期:  2025-06-20
  • 上网日期:  2025-07-08

/

返回文章
返回