-
超表面研究的最新进展表明,实现高效的波前调控需采用非局域超表面结构。然而,目前面向固体弹性波波前调控的超表面设计,仍主要是基于广义斯涅尔定律(General Snell's Law,GSL)的局域结构,其转换效率普遍偏低。本研究将把面向声波的、基于多端口模型的非局域超表面设计方法推广应用于面向薄板弯曲波的超表面设计。应用该方法,我们设计了用于实现薄板弯曲波异常反射、异常透射以及大数值孔径平面聚焦的非局域超表面。有限元模拟结果表明,依此设计的异常反射/透射超表面都具有接近100%的理想转换效率,即便对于偏转角度高达80°的结构仍然如此;而依此设计的非局域平面聚焦超表面,其聚焦效率明显优于相应基于GSL的结构,这一优势在大数值孔径结构中表现得更为明显。这项工作不仅给出了两种在传感、能量收集等领域具有潜在应用价值的高效非局域超表面结构,同时也为弹性波非局域超表面的设计提供了一种高效方法。Recent advancements in metasurfaces indicate that achieving high efficiency requires nonlocal designs where the coupling between constituent units is fully considered. However, most metasurfaces for elastic waves are still designed as local structures based on the Generalized Snell's Law (GSL), which ignore the coupling between sub-units, often results in low efficiency. In this paper, we extend a previously proposed method based on the Multi-port Structural Model (MPSM) for acoustic metasurfaces, to design nonlocal structures for flexural wave in thin elastic plate. Using this method, we can design anomalous reflector/refractor with large diffraction angle and planar focuser with large numerical aperture for flexural waves in thin elastic plates.
As shown in Fig. A1(a), we consider an infinite free thin elastic plate with elastic cylinder pairs assembled symmetrically on both surfaces. The design target is to optimize the height of the cylinder pairs, by which anomalous reflection or refraction for flexural wave in plate can be realized. We show that, by modelling the structure as a MPSM, configurations with the desired functionalities can be efficiently determined. Through three-dimensional finite element simulations, we demonstrate that the proposed anomalous reflectors and refractors can both achieve near-unity efficiencies, even for structures with a deflection angle as large as 80°. As illustration, the field distribution of the scattering wave in two example structures under normal incidence is shown in Fig. A1(b). For the figure, the structures are designed as the 60° anomalous refractor (left panel) and reflector (right panel) under normal incidence.
By the same method, we further design a planar focuser with functionality illustrated schematically in Fig. A2(a). We show that, by optimizing the heights of each cylinder pair, the normally incident flexural wave can be focused on the incident side or the transmitting side of the metasurface with arbitrary focal length. As illustration, we show in Fig. A2(b) the focusing effect of a reflection-type and a transmission-type focuser. The illustrated structures have lateral length of 20λ0 and focal length of 2λ0. We find the focusing efficiency of our nonlocal designs is significantly higher than that of their GSL-based counterparts, particularly for structures with numerical apertures approaching unity.
This work not only introduces an effective design method for nonlocal metasurfaces for flexural waves in thin elastic plates, but also provides two highly efficient nonlocal structures with promising applications in areas such as sensing, energy harvesting, and more.-
Keywords:
- Flexural Wave in Thin Plate /
- Nonlocal Metasurface /
- Multi-port Structural Model /
- Anomalous Reflection /
- Planar Focusing
-
[1] Chi Z J, Du Y C, Huang W H, Tang C X 2018J. Appl. Phys. 124 124901
[2] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016Phys. Rep.-Rev. Sec. Phys. Lett. 634 1-72
[3] Leonhardt U 2006Science 312 1777-1780
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006Science 314 977-980
[5] Smolyaninov I I, Narimanov E E 2010Phys. Rev. Lett. 105 067402
[6] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011Science 334 333-337
[7] Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018Nat. Commun. 9 4334
[8] Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014Nat. Mater. 13 873-878
[9] Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014Sci. Rep. 4 6517
[10] Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I, Cummer S A 2014Nat. Commun. 5 5553
[11] Li Y, Jiang X, Liang B, Cheng J C, Zhang L K 2015Phys. Rev. Appl. 4 024003
[12] Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015Sci. Rep. 5 10966
[13] Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016Phys. Rev. Lett. 117 034301
[14] Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, Popa B I, Jing Y, Cummer S A 2016Sci. Rep. 6 35437
[15] Melde K, Mark A G, Qiu T, Fischer P 2016Nature 537 518
[16] Díaz-Rubio A, Li J F, Shen C, Cummer S A, Tretyakov S A 2019Sci. Adv. 5 eaau7288
[17] Epstein A, Eleftheriades G V 2016Phys. Rev. Lett. 117 256103
[18] Ra'di Y, Sounas D L, Alù A 2017Phys. Rev. Lett. 119 067404
[19] Li J F, Song A L, Cummer S A 2020Phys. Rev. Appl. 14 044012
[20] Peng X Y, Li J F, Shen C, Cummer S A 2021Appl. Phys. Lett. 118 061902
[21] Chiang Y K, Quan L, Peng Y G, Sepehrirahnama S, Oberst S, Alù A, Powell D A 2021Phys. Rev. Appl. 16 064014
[22] Craig S R, Su X S, Norris A, Shi C Z 2019Phys. Rev. Appl. 11 061002
[23] Mei J, Fan L J, Hong X B 2023Appl. Phys. Express 16 077002
[24] Hou Z L, Fang X S, Li Y, Assouar B 2019Phys. Rev. Appl. 12 034021
[25] Ni H, Fang X, Hou Z, Li Y, Assouar B 2019Phys. Rev. B 100 104104
[26] Ren J, Hou Z L 2023Phys. Rev. Appl. 20 044004
[27] Ren J, Hou Z L 2024Phys. Rev. Appl. 22 014040
[28] Nakamura K, Kobayashi Y, Oda K, Shigemura S 2023Sustainability 15 4846
[29] Ahamad S, Soman R, Malinowski P, Wandowski T 2023 presented at the Conference on Health Monitoring of Structural and Biological Systems XVII SPIE, Long Beach, CA, 124880E
[30] Lee T G, Jo S H, Seung H M, Kim S W, Kim E J, Youn B D, Nahm S, Kim M 2020Nano Energy 78 105226
[31] Kim S Y, Bin Oh Y, Lee J S, Kim Y Y 2023Mech. Syst. Sig. Process. 186 109867
[32] Mei J, Fan L J, Hong X B 2022Crystals 12 901
[33] Lee S W, Shin Y J, Park H W, Seung H M, Oh J H 2021Phys. Rev. Appl. 16 064013
[34] Li L X, Su K, Liu H X, Yang Q, Li L, Xie M X 2023J. Appl. Phys. 133 105103
[35] Ruan Y D, Liang X 2021Inter. J. Mech. Sci. 212 106859
[36] Zhang X B, Li L, Li K L, Liu T, Zhang J, Hu N 2023Appl. Acoust. 202 109170
[37] Yang H G, Feng K, Li R, Yan J 2022Front. Phys. 10 909318
[38] Kim S Y, Lee W, Lee J S, Kim Y Y 2021Mech. Syst. Sig. Process. 156 107688
[39] Yuan S M, Gao T, Chen A L, Wang Y S 2025Phys. Lett. A 529 130081
[40] Oh Y B, Kim S Y, Cho S H, Lee J S, Kim Y Y 2024Inter. J. Mech. Sci. 262 108750
[41] Su G Y, Du Z L, Jiang P, Liu Y Q 2022Mech. Syst. Sig. Process. 179 109391
[42] Packo P, Norris A N, Torrent D 2019Phys. Rev. Appl. 11 014023
[43] Jang S V, Lee S W, Oh J H 2023Phys. Rev. Appl. 19 024036
[44] Jiang M, Wang Y F, Assouar B, Wang Y S 2023Phys. Rev. Appl. 20 054020
[45] Jin Y B, Wang W, Khelif A, Djafari-Rouhani B 2021Phys. Rev. Appl. 15 024005
[46] Wang W, Iglesias J, Jin Y B, Djafari-Rouhani B, Khelif A 2021Apl Mater. 9 051125
[47] Lee G, Choi W, Ji B, Kim M, Rho J 2024Adv. Sci. 11 2198-3844
[48] Li M Z, Hu Y B, Cheng J L, Chen J L, Li Z, Li B 2024Inter. J. Mech. Sci. 268 109048
[49] Lin B Z, Li J R, Lin W, Ma Q F 2024Appl. Sci.-Basel 14 2717
[50] Peng H C, Fan L J, Mei J 2024J. Appl. Phys. 135 033102
[51] Peng H C, Mei J 2024Phys. Rev. Appl. 21 034007
[52] Torrent D, Mayou D, Sánchez-Dehesa J 2013Phys. Rev. B 87 115143
[53] Zhu H F, Patnaik S, Walsh T F, Jared B H, Semperlotti F 2020Proc. Natl. Acad. Sci. U.S.A. 117 26099-26108
[54] Jin Y B, El Boudouti E, Pennec Y, Djafari-Rouhani B 2017J. Phys. D-Appl. Phys. 50 425304
[55] Moriyama H, Masuda N, Osaka Y 2006Proc. Sch. Eng. Tokai Univ. (Engl. Ed.) (Japan) 46 111-115
[56] Taghavipour S, Kharkovsky S, Kang W H, Samali B, Mirza O 2017Smart Mater. Struct. 26 104009
计量
- 文章访问数: 11
- PDF下载量: 0
- 被引次数: 0