搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多端口模型设计的非局域薄板弹性波超表面

俞冠泽 侯志林

引用本文:
Citation:

基于多端口模型设计的非局域薄板弹性波超表面

俞冠泽, 侯志林

Nonlocal Metasurface for Flexural Wave in Thin Plate

YU Guanze, HOU Zhilin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 超表面研究的最新进展表明,实现高效的波前调控需采用非局域超表面结构。然而,目前面向固体弹性波波前调控的超表面设计,仍主要是基于广义斯涅尔定律(General Snell's Law,GSL)的局域结构,其转换效率普遍偏低。本研究将把面向声波的、基于多端口模型的非局域超表面设计方法推广应用于面向薄板弯曲波的超表面设计。应用该方法,我们设计了用于实现薄板弯曲波异常反射、异常透射以及大数值孔径平面聚焦的非局域超表面。有限元模拟结果表明,依此设计的异常反射/透射超表面都具有接近100%的理想转换效率,即便对于偏转角度高达80°的结构仍然如此;而依此设计的非局域平面聚焦超表面,其聚焦效率明显优于相应基于GSL的结构,这一优势在大数值孔径结构中表现得更为明显。这项工作不仅给出了两种在传感、能量收集等领域具有潜在应用价值的高效非局域超表面结构,同时也为弹性波非局域超表面的设计提供了一种高效方法。
    Recent advancements in metasurfaces indicate that achieving high efficiency requires nonlocal designs where the coupling between constituent units is fully considered. However, most metasurfaces for elastic waves are still designed as local structures based on the Generalized Snell's Law (GSL), which ignore the coupling between sub-units, often results in low efficiency. In this paper, we extend a previously proposed method based on the Multi-port Structural Model (MPSM) for acoustic metasurfaces, to design nonlocal structures for flexural wave in thin elastic plate. Using this method, we can design anomalous reflector/refractor with large diffraction angle and planar focuser with large numerical aperture for flexural waves in thin elastic plates.
    As shown in Fig. A1(a), we consider an infinite free thin elastic plate with elastic cylinder pairs assembled symmetrically on both surfaces. The design target is to optimize the height of the cylinder pairs, by which anomalous reflection or refraction for flexural wave in plate can be realized. We show that, by modelling the structure as a MPSM, configurations with the desired functionalities can be efficiently determined. Through three-dimensional finite element simulations, we demonstrate that the proposed anomalous reflectors and refractors can both achieve near-unity efficiencies, even for structures with a deflection angle as large as 80°. As illustration, the field distribution of the scattering wave in two example structures under normal incidence is shown in Fig. A1(b). For the figure, the structures are designed as the 60° anomalous refractor (left panel) and reflector (right panel) under normal incidence.
    By the same method, we further design a planar focuser with functionality illustrated schematically in Fig. A2(a). We show that, by optimizing the heights of each cylinder pair, the normally incident flexural wave can be focused on the incident side or the transmitting side of the metasurface with arbitrary focal length. As illustration, we show in Fig. A2(b) the focusing effect of a reflection-type and a transmission-type focuser. The illustrated structures have lateral length of 20λ0 and focal length of 2λ0. We find the focusing efficiency of our nonlocal designs is significantly higher than that of their GSL-based counterparts, particularly for structures with numerical apertures approaching unity.
    This work not only introduces an effective design method for nonlocal metasurfaces for flexural waves in thin elastic plates, but also provides two highly efficient nonlocal structures with promising applications in areas such as sensing, energy harvesting, and more.
  • [1]

    Chi Z J, Du Y C, Huang W H, Tang C X 2018J. Appl. Phys. 124 124901

    [2]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016Phys. Rep.-Rev. Sec. Phys. Lett. 634 1-72

    [3]

    Leonhardt U 2006Science 312 1777-1780

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006Science 314 977-980

    [5]

    Smolyaninov I I, Narimanov E E 2010Phys. Rev. Lett. 105 067402

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011Science 334 333-337

    [7]

    Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018Nat. Commun. 9 4334

    [8]

    Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014Nat. Mater. 13 873-878

    [9]

    Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014Sci. Rep. 4 6517

    [10]

    Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I, Cummer S A 2014Nat. Commun. 5 5553

    [11]

    Li Y, Jiang X, Liang B, Cheng J C, Zhang L K 2015Phys. Rev. Appl. 4 024003

    [12]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015Sci. Rep. 5 10966

    [13]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016Phys. Rev. Lett. 117 034301

    [14]

    Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, Popa B I, Jing Y, Cummer S A 2016Sci. Rep. 6 35437

    [15]

    Melde K, Mark A G, Qiu T, Fischer P 2016Nature 537 518

    [16]

    Díaz-Rubio A, Li J F, Shen C, Cummer S A, Tretyakov S A 2019Sci. Adv. 5 eaau7288

    [17]

    Epstein A, Eleftheriades G V 2016Phys. Rev. Lett. 117 256103

    [18]

    Ra'di Y, Sounas D L, Alù A 2017Phys. Rev. Lett. 119 067404

    [19]

    Li J F, Song A L, Cummer S A 2020Phys. Rev. Appl. 14 044012

    [20]

    Peng X Y, Li J F, Shen C, Cummer S A 2021Appl. Phys. Lett. 118 061902

    [21]

    Chiang Y K, Quan L, Peng Y G, Sepehrirahnama S, Oberst S, Alù A, Powell D A 2021Phys. Rev. Appl. 16 064014

    [22]

    Craig S R, Su X S, Norris A, Shi C Z 2019Phys. Rev. Appl. 11 061002

    [23]

    Mei J, Fan L J, Hong X B 2023Appl. Phys. Express 16 077002

    [24]

    Hou Z L, Fang X S, Li Y, Assouar B 2019Phys. Rev. Appl. 12 034021

    [25]

    Ni H, Fang X, Hou Z, Li Y, Assouar B 2019Phys. Rev. B 100 104104

    [26]

    Ren J, Hou Z L 2023Phys. Rev. Appl. 20 044004

    [27]

    Ren J, Hou Z L 2024Phys. Rev. Appl. 22 014040

    [28]

    Nakamura K, Kobayashi Y, Oda K, Shigemura S 2023Sustainability 15 4846

    [29]

    Ahamad S, Soman R, Malinowski P, Wandowski T 2023 presented at the Conference on Health Monitoring of Structural and Biological Systems XVII SPIE, Long Beach, CA, 124880E

    [30]

    Lee T G, Jo S H, Seung H M, Kim S W, Kim E J, Youn B D, Nahm S, Kim M 2020Nano Energy 78 105226

    [31]

    Kim S Y, Bin Oh Y, Lee J S, Kim Y Y 2023Mech. Syst. Sig. Process. 186 109867

    [32]

    Mei J, Fan L J, Hong X B 2022Crystals 12 901

    [33]

    Lee S W, Shin Y J, Park H W, Seung H M, Oh J H 2021Phys. Rev. Appl. 16 064013

    [34]

    Li L X, Su K, Liu H X, Yang Q, Li L, Xie M X 2023J. Appl. Phys. 133 105103

    [35]

    Ruan Y D, Liang X 2021Inter. J. Mech. Sci. 212 106859

    [36]

    Zhang X B, Li L, Li K L, Liu T, Zhang J, Hu N 2023Appl. Acoust. 202 109170

    [37]

    Yang H G, Feng K, Li R, Yan J 2022Front. Phys. 10 909318

    [38]

    Kim S Y, Lee W, Lee J S, Kim Y Y 2021Mech. Syst. Sig. Process. 156 107688

    [39]

    Yuan S M, Gao T, Chen A L, Wang Y S 2025Phys. Lett. A 529 130081

    [40]

    Oh Y B, Kim S Y, Cho S H, Lee J S, Kim Y Y 2024Inter. J. Mech. Sci. 262 108750

    [41]

    Su G Y, Du Z L, Jiang P, Liu Y Q 2022Mech. Syst. Sig. Process. 179 109391

    [42]

    Packo P, Norris A N, Torrent D 2019Phys. Rev. Appl. 11 014023

    [43]

    Jang S V, Lee S W, Oh J H 2023Phys. Rev. Appl. 19 024036

    [44]

    Jiang M, Wang Y F, Assouar B, Wang Y S 2023Phys. Rev. Appl. 20 054020

    [45]

    Jin Y B, Wang W, Khelif A, Djafari-Rouhani B 2021Phys. Rev. Appl. 15 024005

    [46]

    Wang W, Iglesias J, Jin Y B, Djafari-Rouhani B, Khelif A 2021Apl Mater. 9 051125

    [47]

    Lee G, Choi W, Ji B, Kim M, Rho J 2024Adv. Sci. 11 2198-3844

    [48]

    Li M Z, Hu Y B, Cheng J L, Chen J L, Li Z, Li B 2024Inter. J. Mech. Sci. 268 109048

    [49]

    Lin B Z, Li J R, Lin W, Ma Q F 2024Appl. Sci.-Basel 14 2717

    [50]

    Peng H C, Fan L J, Mei J 2024J. Appl. Phys. 135 033102

    [51]

    Peng H C, Mei J 2024Phys. Rev. Appl. 21 034007

    [52]

    Torrent D, Mayou D, Sánchez-Dehesa J 2013Phys. Rev. B 87 115143

    [53]

    Zhu H F, Patnaik S, Walsh T F, Jared B H, Semperlotti F 2020Proc. Natl. Acad. Sci. U.S.A. 117 26099-26108

    [54]

    Jin Y B, El Boudouti E, Pennec Y, Djafari-Rouhani B 2017J. Phys. D-Appl. Phys. 50 425304

    [55]

    Moriyama H, Masuda N, Osaka Y 2006Proc. Sch. Eng. Tokai Univ. (Engl. Ed.) (Japan) 46 111-115

    [56]

    Taghavipour S, Kharkovsky S, Kang W H, Samali B, Mirza O 2017Smart Mater. Struct. 26 104009

  • [1] 庞乃琦, 王垠, 葛勇, 施斌杰, 袁寿其, 孙宏祥. 基于多端口波导结构的宽频带声触发器. 物理学报, doi: 10.7498/aps.72.20230594
    [2] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, doi: 10.7498/aps.70.20210681
    [3] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, doi: 10.7498/aps.69.20200577
    [4] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, doi: 10.7498/aps.68.20190728
    [5] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, doi: 10.7498/aps.66.144206
    [6] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻. 物理学报, doi: 10.7498/aps.66.217201
    [7] 朱席席, 肖勇, 温激鸿, 郁殿龙. 局域共振型加筋板的弯曲波带隙与减振特性. 物理学报, doi: 10.7498/aps.65.176202
    [8] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, doi: 10.7498/aps.65.027701
    [9] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, doi: 10.7498/aps.64.124102
    [10] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, doi: 10.7498/aps.64.164102
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, doi: 10.7498/aps.64.094101
    [12] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, doi: 10.7498/aps.64.237802
    [13] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, doi: 10.7498/aps.64.184101
    [14] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究. 物理学报, doi: 10.7498/aps.63.238403
    [15] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, doi: 10.7498/aps.63.084103
    [16] 相建凯, 马忠洪, 赵延, 赵晓鹏. 可见光波段超材料的平面聚焦效应. 物理学报, doi: 10.7498/aps.59.4023
    [17] 罗亚梅, 吕百达. 异常空心光束通过球差光阑透镜的聚焦和在焦区的位相奇异特性. 物理学报, doi: 10.7498/aps.58.3915
    [18] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 振荡介质中平面波的反射. 物理学报, doi: 10.7498/aps.58.7573
    [19] 贺奇才, 黄耀熊. 平面电磁波在任意方向运动的介质-介质界面上的反射和透射. 物理学报, doi: 10.7498/aps.48.1044
    [20] 张光寅, 王宝明. 晶体剩余反射带短波边弱振动反射光谱结构的异常敏感性. 物理学报, doi: 10.7498/aps.33.1306
计量
  • 文章访问数:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-18

/

返回文章
返回