搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多端口模型设计的非局域薄板弹性波超表面

俞冠泽 侯志林

引用本文:
Citation:

基于多端口模型设计的非局域薄板弹性波超表面

俞冠泽, 侯志林
cstr: 32037.14.aps.74.20250618

Nonlocal thin plate elastic wave metasurface designed based on multi port model

YU Guanze, HOU Zhilin
cstr: 32037.14.aps.74.20250618
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超表面研究的最新进展表明, 实现高效的波前调控需采用非局域超表面结构. 然而, 目前面向固体弹性波波前调控的超表面设计, 仍主要是基于广义斯涅耳定律(general Snell’s law, GSL)的局域结构, 其转换效率普遍偏低. 本研究将把面向声波的、基于多端口模型的非局域超表面设计方法推广应用于面向薄板弯曲波的超表面设计. 应用该方法, 本工作设计了用于实现薄板弯曲波异常反射、异常透射以及大数值孔径平面聚焦的非局域超表面. 有限元模拟结果表明, 依此设计的异常反射/透射超表面都具有接近100%的理想转换效率, 即便对于偏转角度高达80°的结构仍然如此; 而依此设计的非局域平面聚焦超表面, 其聚焦效率明显优于相应基于GSL的结构, 这一优势在大数值孔径结构中表现得更为明显. 这项工作不仅给出了两种在传感、能量收集等领域具有潜在应用价值的高效非局域超表面结构, 同时也为弹性波非局域超表面的设计提供了一种高效方法.
    Recent development of metasurfaces indicates that achieving high efficiency requires nonlocal designs where the coupling between constituent units is fully considered. However, most metasurfaces for elastic waves are still designed as local structures based on the Generalized Snell’s Law (GSL), which ignores the coupling between sub-units, thus often resulting in low efficiency. In order to design nonlocal structures for flexural wave in thin elastic plate, a previously proposed method based on the multi-port structural model (MPSM) for acoustic metasurfaces is extended in this work. Using this method, anomalous reflector and anomalous refractor, each with a large diffraction angle and planar focuser with large numerical aperture for flexural waves in thin elastic plates, are designed.As the first example, an anomalous reflector or anomalous refractor for flexural wave on an infinite free thin elastic plate with elastic cylinder pairs assembled symmetrically on both surfaces is considered. The design target is to optimize the heights of the cylinder pairs, by which anomalous reflection or refraction for flexural wave in plate can be realized. It is shown that by modelling the structure as an MPSM, configurations with the desired functionalities can be efficiently determined. The three dimensional finite element simulations show that even for structures with a deflection angle as large as 80°, the proposed anomalous reflectors and refractors can achieve near-unity efficiency.By the same method, a planar focuser is further designed. It is shown that by optimizing the heights of each cylinder pair, the normally incident flexural wave can be focused on the incident side or the transmitting side of the metasurface with arbitrary focal length. It is found that the focusing efficiency of our nonlocal designs is significantly higher than that of their GSL-based counterparts, particularly for the structures with numerical apertures approaching unity. This work not only presents an effective design method for nonlocal metasurfaces of flexural waves in thin elastic plates, but also provides two efficient nonlocal structures with broad application prospects in sensing, energy harvesting, and other fields.
      通信作者: 侯志林, phzlhou@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274143)资助的课题.
      Corresponding author: HOU Zhilin, phzlhou@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274143).
    [1]

    Chi Z J, Du Y C, Huang W H, Tang C X 2018 J. Appl. Phys. 124 124901Google Scholar

    [2]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. -Rev. Sec. Phys. Lett. 634 1

    [3]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [5]

    Smolyaninov I I, Narimanov E E 2010 Phys. Rev. Lett. 105 067402Google Scholar

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [7]

    Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018 Nat. Commun. 9 4334Google Scholar

    [8]

    Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014 Nat. Mater. 13 873-878Google Scholar

    [9]

    Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014 Sci. Rep. 4 6517Google Scholar

    [10]

    Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I, Cummer S A 2014 Nat. Commun. 5 5553Google Scholar

    [11]

    Li Y, Jiang X, Liang B, Cheng J C, Zhang L K 2015 Phys. Rev. Appl. 4 024003Google Scholar

    [12]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966Google Scholar

    [13]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [14]

    Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, Popa B I, Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar

    [15]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [16]

    Díaz-Rubio A, Li J F, Shen C, Cummer S A, Tretyakov S A 2019 Sci. Adv. 5 eaau7288Google Scholar

    [17]

    Epstein A, Eleftheriades G V 2016 Phys. Rev. Lett. 117 256103Google Scholar

    [18]

    Ra'di Y, Sounas D L, Alù A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [19]

    Li J F, Song A L, Cummer S A 2020 Phys. Rev. Appl. 14 044012Google Scholar

    [20]

    Peng X Y, Li J F, Shen C, Cummer S A 2021 Appl. Phys. Lett. 118 061902Google Scholar

    [21]

    Chiang Y K, Quan L, Peng Y G, Sepehrirahnama S, Oberst S, Alù A, Powell D A 2021 Phys. Rev. Appl. 16 064014Google Scholar

    [22]

    Craig S R, Su X S, Norris A, Shi C Z 2019 Phys. Rev. Appl. 11 061002Google Scholar

    [23]

    Mei J, Fan L J, Hong X B 2023 Appl. Phys. Express 16 077002Google Scholar

    [24]

    Hou Z L, Fang X S, Li Y, Assouar B 2019 Phys. Rev. Appl. 12 034021Google Scholar

    [25]

    Ni H Q, Fang X S, Hou Z L, Li Y, Assouar B 2019 Phys. Rev. B 100 104104Google Scholar

    [26]

    Ren J, Hou Z L 2023 Phys. Rev. Appl. 20 044004Google Scholar

    [27]

    Ren J, Hou Z L 2024 Phys. Rev. Appl. 22 014040Google Scholar

    [28]

    Nakamura K, Kobayashi Y, Oda K, Shigemura S 2023 Sustainability 15 4846Google Scholar

    [29]

    Ahamad S, Soman R, Malinowski P, Wandowski T 2023 Conference on Health Monitoring of Structural and Biological Systems XVII SPIE Long Beach, CA, 124880E

    [30]

    Lee T G, Jo S H, Seung H M, Kim S W, Kim E J, Youn B D, Nahm S, Kim M 2020 Nano Energy 78 105226Google Scholar

    [31]

    Kim S Y, Bin Oh Y, Lee J S, Kim Y Y 2023 Mech. Syst. Sig. Process. 186 109867Google Scholar

    [32]

    Mei J, Fan L J, Hong X B 2022 Crystals 12 901Google Scholar

    [33]

    Lee S W, Shin Y J, Park H W, Seung H M, Oh J H 2021 Phys. Rev. Appl. 16 064013Google Scholar

    [34]

    Li L X, Su K, Liu H X, Yang Q, Li L, Xie M X 2023 J. Appl. Phys. 133 105103Google Scholar

    [35]

    Ruan Y D, Liang X 2021 Inter. J. Mech. Sci. 212 106859Google Scholar

    [36]

    Zhang X B, Li L, Li K L, Liu T, Zhang J, Hu N 2023 Appl. Acoust. 202 109170Google Scholar

    [37]

    Yang H G, Feng K, Li R, Yan J 2022 Front. Phys. 10 909318Google Scholar

    [38]

    Kim S Y, Lee W, Lee J S, Kim Y Y 2021 Mech. Syst. Sig. Process. 156 107688Google Scholar

    [39]

    Yuan S M, Gao T, Chen A L, Wang Y S 2025 Phys. Lett. A 529 130081Google Scholar

    [40]

    Oh Y B, Kim S Y, Cho S H, Lee J S, Kim Y Y 2024 Inter. J. Mech. Sci. 262 108750Google Scholar

    [41]

    Su G Y, Du Z L, Jiang P, Liu Y Q 2022 Mech. Syst. Sig. Process. 179 109391Google Scholar

    [42]

    Packo P, Norris A N, Torrent D 2019 Phys. Rev. Appl. 11 014023Google Scholar

    [43]

    Jang S V, Lee S W, Oh J H 2023 Phys. Rev. Appl. 19 024036Google Scholar

    [44]

    Jiang M, Wang Y F, Assouar B, Wang Y S 2023 Phys. Rev. Appl. 20 054020Google Scholar

    [45]

    Jin Y B, Wang W, Khelif A, Djafari-Rouhani B 2021 Phys. Rev. Appl. 15 024005Google Scholar

    [46]

    Wang W, Iglesias J, Jin Y B, Djafari-Rouhani B, Khelif A 2021 Apl Mater. 9 051125Google Scholar

    [47]

    Lee G, Choi W, Ji B, Kim M, Rho J 2024 Adv. Sci. 11 2198

    [48]

    Li M Z, Hu Y B, Cheng J L, Chen J L, Li Z, Li B 2024 Inter. J. Mech. Sci. 268 109048Google Scholar

    [49]

    Lin B Z, Li J R, Lin W, Ma Q F 2024 Appl. Sci. -Basel 14 2717Google Scholar

    [50]

    Peng H C, Fan L J, Mei J 2024 J. Appl. Phys. 135 033102Google Scholar

    [51]

    Peng H C, Mei J 2024 Phys. Rev. Appl. 21 034007Google Scholar

    [52]

    Torrent D, Mayou D, Sánchez-Dehesa J 2013 Phys. Rev. B 87 115143Google Scholar

    [53]

    Zhu H F, Patnaik S, Walsh T F, Jared B H, Semperlotti F 2020 Proc. Natl. Acad. Sci. U. S. A. 117 26099Google Scholar

    [54]

    Jin Y B, El Boudouti E, Pennec Y, Djafari-Rouhani B 2017 J. Phys. D-Appl. Phys. 50 425304Google Scholar

    [55]

    Moriyama H, Masuda N, Osaka Y 2006 Proc. Sch. Eng. Tokai Univ. (Engl. Ed. ) (Japan) 46 111

    [56]

    Taghavipour S, Kharkovsky S, Kang W H, Samali B, Mirza O 2017 Smart Mater. Struct. 26 104009Google Scholar

  • 图 1  (a) 超表面结构示意图, 其中, 左侧子图示意出弹性柱体(绿色)对称地安装于弹性薄板正、反两个表面; 空心盒子标出了一个单元, 图中带箭头的线段示意出沿$ {\theta _{\text{i}}} $方向入射的平面波被反射/透射至沿$ {\theta _{\text{r}}} $/$ {\theta _{\text{t}}} $方向的情况, 右侧图展示了单元的结构细节, 其中元胞的横向尺寸、薄板的厚度和两排圆柱之间的间距分别用符号$ {a_0} $, $ {h_0} $和$ {d_{\mathrm{r}}} $表示, 柱体的半径用$ {r_{cy}} $表示, $ {h_n} $表示位于薄板正、反表面上第$ n $对圆柱的高度; (b) 单元结构俯视图, 图中深色区域示意出多端口模型, 带箭头的线段表示薄板中的输入/输出端口, $ A_1^ \pm , A_2^ \pm , \cdots , A_6^ \pm $为端口中的波模式振幅, 绿色圆圈为弹性柱体, $ H_{kn}^ \pm $为第$ n $个柱体中的第$ k $支波模式(端口)的振幅; (c) 弹性圆柱中可与薄板弯曲振动相耦合的3支模式的形变示意图, 从左到右分别为两支剪切模(标记为$ {S_x} $和$ {S_y} $)及一支伸缩模式(标记为$ {L_z} $)

    Fig. 1.  (a) Schematic view of the structure for the metasurface, in the left panel, elastic rods (in green) are assembled symmetrically on both side of the plate, arrows in color show the effect of deflecting a plane wave from $ {\theta _{\text{i}}} $ to $ {\theta _{\text{r}}} $ or $ {\theta _{\text{t}}} $ direction, the unit cell of the structure is shown by a hollow box, the right panel shows the detailed structure of a single unit cell, the symbols $ {a_0} $, $ {h_0} $, and $ {d_{\text{r}}} $ represent respectively the size of the unit cell in $ x $ direction, the thickness of the plate, and the distance between two rows of cylinders. The radius of the cylinder is denoted by $ {r_{cy}} $, the height of the $ n $-th pair of cylinders is denoted by $ {h_n} $; (b) top view of the unit cell. The multi-port structural model is marked in deep color. The red lines indicate the ports in the plate. The amplitudes of the modes in these ports are denoted by $ A_1^ \pm , A_2^ \pm , \cdots , A_6^ \pm $, respectively, circles in green are elastic cylinders, the amplitude of the $ k $-th mode in the $ n $-th cylinder is denoted by $ H_{kn}^ \pm $; (c) the deformation of three vibration modes in cylinders that can couple with the flexural wave in thin plate, from the left to the right are the shear modes ($ {S_x} $ and $ {S_y} $) and longitudinal mode ($ {L_z} $), respectively.

    图 2  (a)优化得到的$ {\theta _{{\text{r, t}}}} = $60°, 70°, 80°结构的$ {h_n} $和$ h_n' $值(近入射侧一排柱体的高度标记为$ {h_n} $, 远入射侧一排的柱体高度用$ h_n' $标记); (b) $ {\theta _{{\text{r, t}}}} = $60°结构板中面散射波$ z $分量位移实部的场分布图, 左侧子图对应于异常透射, 右侧子图对应于异常反射, 图中白色箭头示意平面波的传播方向; (c)用于对比的基于GSL的结构构型(左)以及${\theta _{\text{r}}} = {60^ \circ }$结构的$ z $分量反射位移场分布(右)

    Fig. 2.  (a) The optimized $ {h_n} $/$ h_n' $ value for structures with $ {\theta _{{\text{r, t}}}} = $60°, 70° and 80°, the height of the cylinders in the row closed to the incident side is denoted by $ {h_n} $, while those in the other row is denoted by $ h_n' $; (b) the field distribution of the real part of the $ z $-component displacement on the middle plane of the plate for the structure with $ {\theta _{{\text{r, t}}}} = $60°, the left and right panels correspond respectively to the anomalous refraction and anomalous reflection, the white arrows indicate the direction of the plane wave; (c) configuration of the GSL structure for comparison (left) and the displacement field of the scattering wave for the structure with ${\theta _{\text{r}}} = {60^ \circ }$ (right).

    图 3  (a)平面聚焦超表面的俯视图, 结构由对称在薄板的正、反两表面上分别安装两排间距为$ {d_{\text{r}}} $的弹性柱体(标注为绿色圆圈)构成, 两排弹性柱体均等间距地分布于$ - \dfrac{{{a_0}}}{2} < x < \dfrac{{{a_0}}}{2} $间, $ \left( {0, f} \right) $, $ \left( {0, - f} \right) $为反射、透射式聚焦的焦点坐标(薄板中面上), 图中带箭头的线段示意了波传播的轨迹; (b)优化得到的构成超表面圆柱体的高度, 其中$ {h_n} $为近入射侧一排柱体的高度, $ h_n' $为远入射侧一排柱体的高度. 左、右两列子图分别对应于$ {a_0} = 10{\lambda _0} $和$ {a_0} = 20{\lambda _0} $的结构, 上、下两行子图分别对应于反射及透射式聚焦结构

    Fig. 3.  (a) Top view of the planar focuser. The structure is constructed by symmetrically assembling two rows of cylinders with a space of $ {d_{\text{r}}} $ on each surface of the thin plate, on each surface, the elastic cylinders are arranged equidistantly in $ - \dfrac{{{a_0}}}{2} < x < \dfrac{{{a_0}}}{2} $, $ \left( {0, f} \right) $ and $ \left( {0, - f} \right) $ are the focal point of the reflection-type and refraction-type structure, arrows indicate the wave propagation trajectories; (b) the optimized height of the elastic cylinders for the structure, the height of the cylinders in the row closed to the incident side is denoted by $ {h_n} $, the ones in the other row is denoted by $ h_n' $, panels on the left (right) -hand side are for structures with $ {a_0} = 10{\lambda _0} $ ($ 20{\lambda _0} $), panels on top (bottom) are for reflection (refraction) -type structures.

    图 4  (a)平面聚焦超表面在垂直入射平面波下的散射波强度场分布, 该场值由$ {r_{\text{f}}} = {\left| {{{{A_{\text{s}}}}}/{{{A_{\text{i}}}}}} \right|^2} $定义, 其中$ {A_{\text{s}}} $和$ {A_{\text{i}}} $分别为散射波和入射波的振幅; (b)焦平面上的$ {r_{\text{f}}} $值分布, 图中仅显示了$ \left| x \right| \leqslant 1.5{\lambda _0} $区域中的值, 左上子图中的$ {x_1} $和$ {x_2} $示意出了主峰的边缘

    Fig. 4.  (a) Field distribution of the scattered wave from the planar focuser under the normally incident plane wave. The fields value is defined by $ {r_{\text{f}}} = {\left| {{{{A_{\text{s}}}}}/{{{A_{\text{i}}}}}} \right|^2} $, where $ {A_{\text{s}}} $ and $ {A_{\text{i}}} $ are the amplitudes of the scattered and incident waves, respectively; (b) the $ {r_{\text{f}}} $ values along the focal plane, only the value in region $ \left| x \right| \leqslant 1.5{\lambda _0} $ is shown. In the top-left panel, edges of the main peak are marked by $ {x_1} $ and $ {x_2} $.

    图 5  $ {a_0} = 10{\lambda _0} $反射式聚焦结构的(a) $ {r_{{\text{ff}}}} $及(b) $ \eta $值随归一化入射波长$ {\lambda / {{\lambda _0}}} $的变化关系

    Fig. 5.  (a) $ {r_{{\text{ff}}}} $ and (b) $ \eta $ value as a function of the normalized working wavelength $ {\lambda/ {{\lambda _0}}} $ for the reflection-type focuser with $ {a_0} = 10{\lambda _0} $.

    表 1  4种不同结构的数值孔径 (NA) 、焦点处强度比($ {r_{{\text{ff}}}} $)、焦平面上主峰的半高宽(HWMP), 以及聚焦效率($ \eta $)

    Table 1.  Numerical aperture (NA), intensity ratio at the focal point ($ {r_{{\text{ff}}}} $), half height width of the main peak on the focal plane (HWMP), and focusing efficiency ($ \eta $) for four different structures.

    聚焦类型 横向长度 NA $ {r_{{\text{ff}}}} $ HWMP $ \eta $/%
    反射式 $ 10{\lambda _0} $ 0.928 29.92 $ 0.372{\lambda _0} $ 64.36
    反射式 $ 20{\lambda _0} $ 0.980 48.01 $ 0.375{\lambda _0} $ 48.97
    透射式 $ 10{\lambda _0} $ 0.928 23.66 $ 0.396{\lambda _0} $ 67.82
    透射式 $ 20{\lambda _0} $ 0.980 38.59 $ 0.414{\lambda _0} $ 67.71
    下载: 导出CSV
  • [1]

    Chi Z J, Du Y C, Huang W H, Tang C X 2018 J. Appl. Phys. 124 124901Google Scholar

    [2]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. -Rev. Sec. Phys. Lett. 634 1

    [3]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [5]

    Smolyaninov I I, Narimanov E E 2010 Phys. Rev. Lett. 105 067402Google Scholar

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [7]

    Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018 Nat. Commun. 9 4334Google Scholar

    [8]

    Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014 Nat. Mater. 13 873-878Google Scholar

    [9]

    Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014 Sci. Rep. 4 6517Google Scholar

    [10]

    Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I, Cummer S A 2014 Nat. Commun. 5 5553Google Scholar

    [11]

    Li Y, Jiang X, Liang B, Cheng J C, Zhang L K 2015 Phys. Rev. Appl. 4 024003Google Scholar

    [12]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966Google Scholar

    [13]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [14]

    Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, Popa B I, Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar

    [15]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [16]

    Díaz-Rubio A, Li J F, Shen C, Cummer S A, Tretyakov S A 2019 Sci. Adv. 5 eaau7288Google Scholar

    [17]

    Epstein A, Eleftheriades G V 2016 Phys. Rev. Lett. 117 256103Google Scholar

    [18]

    Ra'di Y, Sounas D L, Alù A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [19]

    Li J F, Song A L, Cummer S A 2020 Phys. Rev. Appl. 14 044012Google Scholar

    [20]

    Peng X Y, Li J F, Shen C, Cummer S A 2021 Appl. Phys. Lett. 118 061902Google Scholar

    [21]

    Chiang Y K, Quan L, Peng Y G, Sepehrirahnama S, Oberst S, Alù A, Powell D A 2021 Phys. Rev. Appl. 16 064014Google Scholar

    [22]

    Craig S R, Su X S, Norris A, Shi C Z 2019 Phys. Rev. Appl. 11 061002Google Scholar

    [23]

    Mei J, Fan L J, Hong X B 2023 Appl. Phys. Express 16 077002Google Scholar

    [24]

    Hou Z L, Fang X S, Li Y, Assouar B 2019 Phys. Rev. Appl. 12 034021Google Scholar

    [25]

    Ni H Q, Fang X S, Hou Z L, Li Y, Assouar B 2019 Phys. Rev. B 100 104104Google Scholar

    [26]

    Ren J, Hou Z L 2023 Phys. Rev. Appl. 20 044004Google Scholar

    [27]

    Ren J, Hou Z L 2024 Phys. Rev. Appl. 22 014040Google Scholar

    [28]

    Nakamura K, Kobayashi Y, Oda K, Shigemura S 2023 Sustainability 15 4846Google Scholar

    [29]

    Ahamad S, Soman R, Malinowski P, Wandowski T 2023 Conference on Health Monitoring of Structural and Biological Systems XVII SPIE Long Beach, CA, 124880E

    [30]

    Lee T G, Jo S H, Seung H M, Kim S W, Kim E J, Youn B D, Nahm S, Kim M 2020 Nano Energy 78 105226Google Scholar

    [31]

    Kim S Y, Bin Oh Y, Lee J S, Kim Y Y 2023 Mech. Syst. Sig. Process. 186 109867Google Scholar

    [32]

    Mei J, Fan L J, Hong X B 2022 Crystals 12 901Google Scholar

    [33]

    Lee S W, Shin Y J, Park H W, Seung H M, Oh J H 2021 Phys. Rev. Appl. 16 064013Google Scholar

    [34]

    Li L X, Su K, Liu H X, Yang Q, Li L, Xie M X 2023 J. Appl. Phys. 133 105103Google Scholar

    [35]

    Ruan Y D, Liang X 2021 Inter. J. Mech. Sci. 212 106859Google Scholar

    [36]

    Zhang X B, Li L, Li K L, Liu T, Zhang J, Hu N 2023 Appl. Acoust. 202 109170Google Scholar

    [37]

    Yang H G, Feng K, Li R, Yan J 2022 Front. Phys. 10 909318Google Scholar

    [38]

    Kim S Y, Lee W, Lee J S, Kim Y Y 2021 Mech. Syst. Sig. Process. 156 107688Google Scholar

    [39]

    Yuan S M, Gao T, Chen A L, Wang Y S 2025 Phys. Lett. A 529 130081Google Scholar

    [40]

    Oh Y B, Kim S Y, Cho S H, Lee J S, Kim Y Y 2024 Inter. J. Mech. Sci. 262 108750Google Scholar

    [41]

    Su G Y, Du Z L, Jiang P, Liu Y Q 2022 Mech. Syst. Sig. Process. 179 109391Google Scholar

    [42]

    Packo P, Norris A N, Torrent D 2019 Phys. Rev. Appl. 11 014023Google Scholar

    [43]

    Jang S V, Lee S W, Oh J H 2023 Phys. Rev. Appl. 19 024036Google Scholar

    [44]

    Jiang M, Wang Y F, Assouar B, Wang Y S 2023 Phys. Rev. Appl. 20 054020Google Scholar

    [45]

    Jin Y B, Wang W, Khelif A, Djafari-Rouhani B 2021 Phys. Rev. Appl. 15 024005Google Scholar

    [46]

    Wang W, Iglesias J, Jin Y B, Djafari-Rouhani B, Khelif A 2021 Apl Mater. 9 051125Google Scholar

    [47]

    Lee G, Choi W, Ji B, Kim M, Rho J 2024 Adv. Sci. 11 2198

    [48]

    Li M Z, Hu Y B, Cheng J L, Chen J L, Li Z, Li B 2024 Inter. J. Mech. Sci. 268 109048Google Scholar

    [49]

    Lin B Z, Li J R, Lin W, Ma Q F 2024 Appl. Sci. -Basel 14 2717Google Scholar

    [50]

    Peng H C, Fan L J, Mei J 2024 J. Appl. Phys. 135 033102Google Scholar

    [51]

    Peng H C, Mei J 2024 Phys. Rev. Appl. 21 034007Google Scholar

    [52]

    Torrent D, Mayou D, Sánchez-Dehesa J 2013 Phys. Rev. B 87 115143Google Scholar

    [53]

    Zhu H F, Patnaik S, Walsh T F, Jared B H, Semperlotti F 2020 Proc. Natl. Acad. Sci. U. S. A. 117 26099Google Scholar

    [54]

    Jin Y B, El Boudouti E, Pennec Y, Djafari-Rouhani B 2017 J. Phys. D-Appl. Phys. 50 425304Google Scholar

    [55]

    Moriyama H, Masuda N, Osaka Y 2006 Proc. Sch. Eng. Tokai Univ. (Engl. Ed. ) (Japan) 46 111

    [56]

    Taghavipour S, Kharkovsky S, Kang W H, Samali B, Mirza O 2017 Smart Mater. Struct. 26 104009Google Scholar

  • [1] 庞乃琦, 王垠, 葛勇, 施斌杰, 袁寿其, 孙宏祥. 基于多端口波导结构的宽频带声触发器. 物理学报, 2023, 72(16): 164301. doi: 10.7498/aps.72.20230594
    [2] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [3] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [4] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [5] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [6] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻. 物理学报, 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [7] 朱席席, 肖勇, 温激鸿, 郁殿龙. 局域共振型加筋板的弯曲波带隙与减振特性. 物理学报, 2016, 65(17): 176202. doi: 10.7498/aps.65.176202
    [8] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [9] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [10] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [12] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [13] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [14] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究. 物理学报, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [15] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [16] 相建凯, 马忠洪, 赵延, 赵晓鹏. 可见光波段超材料的平面聚焦效应. 物理学报, 2010, 59(6): 4023-4029. doi: 10.7498/aps.59.4023
    [17] 罗亚梅, 吕百达. 异常空心光束通过球差光阑透镜的聚焦和在焦区的位相奇异特性. 物理学报, 2009, 58(6): 3915-3922. doi: 10.7498/aps.58.3915
    [18] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 振荡介质中平面波的反射. 物理学报, 2009, 58(11): 7573-7578. doi: 10.7498/aps.58.7573
    [19] 贺奇才, 黄耀熊. 平面电磁波在任意方向运动的介质-介质界面上的反射和透射. 物理学报, 1999, 48(6): 1044-1051. doi: 10.7498/aps.48.1044
    [20] 张光寅, 王宝明. 晶体剩余反射带短波边弱振动反射光谱结构的异常敏感性. 物理学报, 1984, 33(9): 1306-1313. doi: 10.7498/aps.33.1306
计量
  • 文章访问数:  945
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-12
  • 修回日期:  2025-07-03
  • 上网日期:  2025-07-18
  • 刊出日期:  2025-09-05

/

返回文章
返回