搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合金元素对钯基合金热力学和弹性性能的影响规律研究以及数据库构建

朱晗毓 种晓宇 高兴誉 武海军 李祖来 冯晶 宋海峰

引用本文:
Citation:

合金元素对钯基合金热力学和弹性性能的影响规律研究以及数据库构建

朱晗毓, 种晓宇, 高兴誉, 武海军, 李祖来, 冯晶, 宋海峰

Research on the influence of alloying elements on the thermodynamic and elastic properties of palladium based alloys and database construction

ZHU Hanyu, CHONG Xiaoyu, GAO Xinyu, WU Haijun, LI Zulai, FENG Jing, SONG Haifeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 钯(Pd)合金较低的摩擦系数和较好的力学性能使得它在用于长时间稳定工作的高精度仪器仪表中具备潜在优势,但是因为高昂的原料和实验成本导致基础数据缺乏,无法进行高性能Pd合金的设计。因此,本研究利用第一性原理计算了Pd的晶格常数和弹性模量,并建立Pd与Al,Si,Sc,Ti,V,Cr,Mn,Fe,Co,Ni等33种合金元素形成的稀固溶体模型,计算了混合焓、弹性常数和弹性模量。研究结果表明,除Mn,Fe,Co,Ni,Ru,Rh,Os和Ir外,其他合金元素都可以固溶到Pd中,元素周期表两侧的合金元素能提高Pd固溶体的延展性,其中La,Ag和Zn的作用最明显。通过差分电荷密度分析,Ag掺杂后形成的电子云呈球形分布,造成延展性提高,Hf掺杂后周围的离域程度最大,表明Hf与Pd的键合存在较强的离子性,导致Pd31Hf硬度较高。
    本文数据集可在科学数据银行数据库 https://www.doi.org/10.57760/sciencedb.j00213.00186中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/uqMzye)
    The lower friction coefficient and better mechanical properties of palladium (Pd) alloys make them potentially advantageous for use in high-precision instruments and devices that require long-term stable performance. However, due to the high cost of raw materials and experimental expenses, there is a lack of fundamental data, hindering the design of high-performance Pd alloys. Therefore, in this study, first-principles calculations were used to determine the lattice constant and elastic modulus of Pd. A dilute solid solution model was established for Pd alloys with 33 elements, including Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and others. The mixing enthalpy, elastic constants, and elastic modulus were calculated. The results show that, except for Mn, Fe, Co, Ni, Ru, Rh, Os, and Ir, all other alloying elements can form solid solutions with Pd. Alloying elements from both sides of the periodic table enhance the ductility of Pd solid solutions, with La, Ag, and Zn having the most significant effects, while Cu and Hf reduce the ductility of Pd. Differential charge density analysis indicates that the electron cloud formed after doping with Ag is spherically distributed, which improves ductility. After doping with Hf, the degree of delocalization around the atoms is maximized, suggesting a strong ionic bond between Hf and Pd, leading to a higher hardness of Pd31Hf.
    The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00186(https://www.scidb.cn/s/uqMzye)
  • [1]

    Gao S L, Fan S S, Yuan C, Cao J W 2023 Aero Weapon. 30(6) 11.(inChinese)[高书亮,樊思思,袁成,曹军伟 2023 航空兵器 30(6) 11 ]

    [2]

    Xu X, Lv J X, Wang Y, Li M, Wang Z, Wang H 2025 Mater. Genome Eng. Adv. 3(2) e69

    [3]

    Jiao L 2018 M. S. Thesis ( Beijing: Beijing University Of Technology) (inChinese) [焦磊 2018 硕士学位论文 (北京:北京工业大学)]

    [4]

    Ma X D, Yu J J, Zhao T 2016 Shandong Ind. Technol. 19 2[马晓东 余建军 赵涛 2016 山东工业技术 19 2]

    [5]

    Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta Metall. Sin. 56 10 1313

    [6]

    Wang Z, Qin M, Zhang P, Xu Y, Que S T, Yan F, Xiang X D 2025 Mater. Genome Eng. Adv. 4 16

    [7]

    Wang H, Xiang Y, Xiang X D, Chen L Q 2015 Sci. Technol. Rev. 33 10 13[汪洪,向勇,项晓东,陈立泉 2015 科技导报33 10 13]

    [8]

    Guo Z K, Li R, He X F, Guo J, Ju S H 2024 Mater. Genome Eng. Adv. 2 4 E 73

    [9]

    Meng H Y, Huang J, Zhao T H, Zhang X Y, Tong Y, Qu J L, Li W D, Jiang L, Meng F C, Chen S Y 2025 Mater. Genome Eng. Adv. 9 3

    [10]

    Wang W Y, Tang B, Shang S L, Wang J, Li S, Wang Y, Zhu J, Wei S, Wang J, Darling K A, Mathaudhu S N, Wang Y, Ren Y, Hui X D, Kecskes L J, Li J, Liu Z K 2019 Acta Mater. 170 231

    [11]

    Xia Y X, He J G, Chen N F, Chen J K 2024 Rare Met. 43 8 3460

    [12]

    Chong X Y, Paz Soldan Palma J, Wang Y, Shang S L, Drymiotis F, Ravi V A, Star K E, Fleurial J P, Liu Z K 2021 Acta Mater. 217

    [13]

    Hu Y C, Tian J 2023 J. Mater. Informat. 3 1

    [14]

    Wang W Y, Gan B, Lin D, Wang J, Wang Y, Tang B, Kou H C, Shang S L, Wang Y, Gao X Y, Song H F, Hui X D, Kecskes L J, Xia Z H, Dahmen K A, Liaw P K, Li J S, Liu Z K 2020 J. Mater. Sci. Technol. 53 192

    [15]

    Zou C, Li J, Wang W Y, Zhang Y, Lin D, Yuan R, Wang X, Tang B, Wang J, Gao X Y, Kou H, Hui X D, Zeng X Q, Ma Q, Song H F, Liu Z K, Xu D S 2021 Acta Mater. 202 211

    [16]

    Liao M Q, Liu Y, Min L, Lai Z H, Han T Y, Yang D, Zhu J C 2018 Harbin Inst. Technol. 101 152

    [17]

    Birch F 1947 Phys. Rev. 71(11) 809

    [18]

    Shang S L, Wang Y, Kim D, Liu Z K 2010 Comput. Mater. Sci. 47 4 1040

    [19]

    Zhou Y X 2021 Ph.D. Dissertation ( Kunming: Kunming University of Science and Technology) (in Chinese) [周云轩 2021 博士学位论文 (昆明:昆明理工大学)]

    [20]

    Chong X, Wei Y, Liang Y, Shang S, Li C, Zhang A, Wei Y, Gao X, Wang Y, Feng J, Chen L, Song H, Liu Z K 2023 J. Mater. Inf. 3 21

    [21]

    Teter D M, Gibbs G V, Boisen M B Jr, Allan D C, Teter M P1995 Phys. Rev. B 52(11) 8064

    [22]

    Huang Z H, Liu G T, Zhang B F, Yan M F, Fu Y D 2020 Phys. Lett. A 384 33

    [23]

    Su Y., Liang C X, Wang D 2023 J. Mater. Inf. 3 14

    [24]

    Duan Y H, Sun Y, Peng M J, Zhou S G 2014 J. Alloys Compd. 595 14

    [25]

    Tang B Y, Chen P, Li D L, Yi J X, Wen L, Peng L M, Ding W J 2010 J. Alloys Compd. 492(1-2) 416

    [26]

    Wang Y, Liao M Q, Bocklund B J, Gao P, Shang S L, Kim H J, Beese A M, Chen L Q, Liu Z K 2021 Calphad 75 102355

    [27]

    Liu Y, Lu Y H, Wang W, Li J, Zhang Y, Yin J, Pan X Q, Chen Y, Li J S, Song H F 2023 J. Mater. Inf. 3 17

    [28]

    Chen R T, Li E, Zou Y 2024 J. Mater. Inf. 4 26

    [29]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100(13) 136406

    [30]

    Vega L, Vines F 2020 J. Comput. Chem. 41(30) 2598

    [31]

    Brańka A C, Wojciechowski K W 2008 J Non-Cryst Solids 354 35

    [32]

    i H, Yin J, Wei G, Lai W S, Liu B X, Liu J B 2023 Rare. Met. 42(5) 1663

    [33]

    Li R Y, Duan Y H 2016 Philos. Mag. 96(10) 972

    [34]

    Ozisik H B, Deligoz E, Ozisik H, Ateser E 2020 Mater. Res. Express. 7 025004

    [35]

    Kenneth Barbalace https://EnvironmentalChemistry.com/yogi/periodic/Pd.html [10/12/2025]

    [36]

    Samsonov G V 1968 Handbook of the Physicochemical Properties of the Elements(New York: Springer New)

    [37]

    Peng H J, Xie Y Q, Tao H J 2006 Trans. Nonferrous Met. Soc. China 16(1) 100 [ 彭红建,谢佑卿,陶辉锦 2006 中国有色金属学报 16(1) 100]

    [38]

    Duan Y J, Qiao J C 2022 Acta Phys. Sin. 71 086101[段亚娟,乔吉超 2022 物理学报 71 086101]

    [39]

    Zhang X, Wang D, Nagaumi H, Wang R, Wu Z, Zhang M, Gao D, Chen H, Wang P, Zhou P, Zhou Y, Wang Z, Li T 2025 Mater. Genome Eng. Adv. 3(2) e70008.

    [40]

    Born M 1939 J. Chem. Phys. 7(8) 591

    [41]

    Wang G C, Jiang Y H, Li Z L, Chong X Y, Feng J 2021 Ceram. Int. 47(4) 4758

    [42]

    Xu X W, Fu K, Li L L, Lu Z M, Zhang X H, Fan Y, Lin J, Liu G D, Luo H Z, Tang C C 2013 Physica B 419 105

    [43]

    Tan F Q, Bai Q G, Yu B, Wang J F, Zhang Z H 2024 Rare Met. 13 5305

    [44]

    Zhuang Y, Chen J C, Yan Z , Lv L U 2015 Mater. Rev. 29(2) 150

    [45]

    Ma W, Huang H, Ding W, Guo S, Liu H X, Cheng X N 2023 Rare. Met. 42(5) 1670

  • [1] 刘郅澄, 周杰, 陈凡, 彭彪, 彭文屹, 章爱生, 邓晓华, 罗显芝, 刘日新, 刘德武, 黄雨, 阎军. Si对Inconel 718合金中γ相影响的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230583
    [2] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230132
    [3] 张博凯. 胶体聚合物弹性模量的微观理论: 键长的效应. 物理学报, doi: 10.7498/aps.70.20210128
    [4] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190664
    [5] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, doi: 10.7498/aps.66.130501
    [6] 张朝民, 江勇, 尹登峰, 陶辉锦, 孙顺平, 姚建刚. 点缺陷浓度对非化学计量比L12型结构的A13Sc弹性性能的影响. 物理学报, doi: 10.7498/aps.65.076101
    [7] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, doi: 10.7498/aps.63.233103
    [8] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.116201
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, doi: 10.7498/aps.62.087104
    [10] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, doi: 10.7498/aps.61.038210
    [11] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, doi: 10.7498/aps.61.064211
    [12] 张正罡, 他得安. 基于弹性模量检测骨疲劳的超声导波方法研究. 物理学报, doi: 10.7498/aps.61.134304
    [13] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047110
    [14] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, doi: 10.7498/aps.60.107504
    [15] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数. 物理学报, doi: 10.7498/aps.60.076201
    [16] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, doi: 10.7498/aps.59.8037
    [17] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.6882
    [18] 王娜, 唐壁玉. L12型铝合金的结构、弹性和电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.230
    [19] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, doi: 10.7498/aps.57.7204
    [20] 宇 霄, 罗晓光, 陈贵锋, 沈 俊, 李养贤. 第一性原理计算XHfO3(X=Ba, Sr)的结构、弹性和电子特性. 物理学报, doi: 10.7498/aps.56.5366
计量
  • 文章访问数:  35
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-05

/

返回文章
返回